Questões de Física - Física Moderna para Concurso

Foram encontradas 524 questões

Q2064843 Física
Numa reação nuclear pode acontecer emissões de algumas partículas como alfa (α), beta (β), gama (y) e nêutron (n).
Na equação, 92U238 + 7N1499E246 + x, o x é igual a
Alternativas
Q2064839 Física
Os elementos combustíveis de um reator nuclear podem ser constituídos por pequenas esferas de óxido de Urânio. O chamado enriquecimento na fabricação desses elementos consiste em deixá-los ricos em
Alternativas
Q2064804 Física
Considere que a velocidade da luz no vácuo é 3×108 m/s e que o raio da órbita da Terra é 1,5×1011 m. Este raio é chamado de Unidade Astronômica. O número de Unidades Astronômicas a que um ano-luz corresponde é, aproximadamente, igual a 
Alternativas
Q2064561 Física

I. Protetores solares são produzidos a partir de uma mistura complexa de componentes dos quais apenas 10% a 30% são ingredientes ativos, que interagem fisicamente com os fótons da porção do espectro da radiação solar que podem causar câncer nas células a diferentes profundidades do tecido epitelial (pela interação em nível molecular com trechos da molécula de DNA) como o UVA e o UVB.

II. O processo de excitação eletrônica de átomos pode ocorrer a partir da absorção/interação dos elétrons dos átomos. A energia dos fótons é dada por E = h.f, onde h é a constante de Planck e f a frequência do fóton (em acordo com a dualidade partícula-onda). A frequência e o comprimento de onda estão relacionados por c = λf.

III. São quantidades físicas e constantes características úteis às estimativas nesse contexto:


UVB: 280 a 315 nm

UVA: 315 a 400 nm

Infravermelho: 0.8

Também são materiais utilizados em filtros solares substâncias ativas inorgânicas, como micro e nanopartículas de ZnO e o TiO2 - famosos na indústria de dispositivos semicondutores e da opto-eletrônica onde foram primeiramente descobertos, testados e compreendidos no contexto da física moderna de materiais (que explora as propriedades eletrônicas dos materiais utilizando a mecânica quântica). Nos dois casos se tratam de materiais semicondutores (característica normalmente associada à sua forma cristalina macroscópica), com aplicações bastantes intensas, em combinações com outros materiais, em, por exemplo, células solares e dispositivos emissores de luz.


Considere as afirmativas a seguir.


I. Por terem mais átomos que as ______, e por serem mais regulares na distribuição geométrica dos átomos, as micro/nanopartículas têm seus estados eletrônicos agrupados em conjunto mais denso nas energias dos estados eletrônicos (que ficam espalhados sobre a estrutura molecular) do que no caso de moléculas. Com o aumento de tamanho dessas partículas, mantida a regularidade geométrica, esse adensamento de estados eletrônicos aumenta e leva ao surgimento de ______ de valência e condução que estão separadas por uma lacuna vazia de estados, também conhecida como gap.

II. No gráfico a seguir temos a absorbância de nanopartículas de TiO2 (taxa de absorção de fótons pelo material comparada com a potência irradiada sobre o material, valor medido em um detector óptico). Se considerarmos que as transições ficaram suficientemente intensas em torno de 400 nm, o ______ (acessível pelo processo de excitação óptica) do TiO2 pode ser estimado em cerca de ______ eV.


Imagem associada para resolução da questão



Assinale a alternativa que preencha correta e respectivamente as lacunas.

Alternativas
Q2064560 Física

I. Protetores solares são produzidos a partir de uma mistura complexa de componentes dos quais apenas 10% a 30% são ingredientes ativos, que interagem fisicamente com os fótons da porção do espectro da radiação solar que podem causar câncer nas células a diferentes profundidades do tecido epitelial (pela interação em nível molecular com trechos da molécula de DNA) como o UVA e o UVB.

II. O processo de excitação eletrônica de átomos pode ocorrer a partir da absorção/interação dos elétrons dos átomos. A energia dos fótons é dada por E = h.f, onde h é a constante de Planck e f a frequência do fóton (em acordo com a dualidade partícula-onda). A frequência e o comprimento de onda estão relacionados por c = λf.

III. São quantidades físicas e constantes características úteis às estimativas nesse contexto:


UVB: 280 a 315 nm

UVA: 315 a 400 nm

Infravermelho: 0.8

Dentre os componentes mais comuns das substâncias ativas utilizadas na produção de protetores solares temos moléculas orgânicas, como o Avobenzone, também chamado 3 - (4-tert-Butylphenyl) - 1 - (4- methoxyphenyl)propane-1,3 -dione.


Imagem associada para resolução da questão



Em moléculas a excitação eletrônica pode levar à alterações estruturais (geométricas) na molécula, em virtude da redistribuição dos elétrons nos estados excitados em relação à distribuição no estado fundamental. O processo de alteração da geometria molecular pode então desencadear alteração na energia dos estados excitados e promover transições eletrônicas mais próximas em energia e mesmo produzir interações com o ambiente molecular. Assim, o processo de desexcitação pode ser acompanhado por uma complexa cadeia de transições eletrônicas graduais, em cascata, que resultam na emissão de fótons pouco energéticos que não oferecem riscos à estabilidade química das moléculas de DNA, como no infravermelho térmico.

Considere a energia associada à excitação por UVA de 360 nm e a energia de fótons mais energéticos da faixa do infravermelho, já seguros à saúde. Assinale a alternativa que apresenta o valor correto da diferença entre essas duas energias (com aproximação em dois algarismos significativos). 



Alternativas
Respostas
201: C
202: B
203: A
204: E
205: B