Questões de Concurso
Foram encontradas 8.337 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Um sistema de irrigação em uma fazenda utiliza vasos comunicantes e um sifão para transportar água de um reservatório elevado para uma série de campos agrícolas situados em níveis diferentes. O sistema é composto por dois tanques conectados por um tubo em forma de U invertido (sifão), por onde a água flui de um tanque superior para um tanque inferior, e deste para os campos.
Tendo como base a situação apresentada, julgue o item que se segue.
Em um sistema de vasos comunicantes e sifão, a pressão em todos os pontos ao longo da linha de água nos vasos comunicantes é a mesma, o que garante que o nível da água se mantenha constante e que o fluxo de água pelo sifão continue ininterrupto, independentemente da diferença de altura entre os tanques.
Uma usina hidrelétrica está operando com uma vazão de água constante que passa pelas turbinas para gerar energia. O sistema está em regime estacionário, e o volume de controle é definido em torno de uma turbina específica. A equação da quantidade de movimento para esse volume de controle inercial é utilizada para analisar as forças atuantes no sistema.
A partir da situação hipotética apresentada, julgue o item subsequente.
A quantidade de movimento do fluxo de água que entra na turbina é igual à quantidade de movimento do fluxo de água que sai da turbina, o que resulta em uma força líquida nula sobre o volume de controle.
Um giroscópio tem um rotor, de massa m = 0,2 kg e raio r = 0,1 m, que gira com velocidade angular ω = 100 rad/s em torno do seu eixo de rotação. O giroscópio é montado de tal forma que seu eixo de rotação pode se inclinar livremente, permitindo precessão ao redor de um eixo vertical. A distância do centro do rotor ao ponto de suporte é L = 0,2 m, como mostra o esquema a seguir.
Com base nessa situação, e considerando que o rotor do giroscópio seja um disco fino e que a aceleração da gravidade é 10 m/s2, julgue o item seguinte.
Um vaso de pressão esférico, de raio interno 0,5 m e espessura de parede 0,05 m, é feito de um aço com módulo de elasticidade igual a 210 GPa e coeficiente de Poisson 0,3. Esse vaso é submetido a uma pressão interna de 10 Mpa.
Com base nessa situação hipotética e considerando o aço como um material isotrópico, sujeito a tensão bidirecional, julgue o próximo item.
Um vaso de pressão esférico, de raio interno 0,5 m e espessura de parede 0,05 m, é feito de um aço com módulo de elasticidade igual a 210 GPa e coeficiente de Poisson 0,3. Esse vaso é submetido a uma pressão interna de 10 Mpa.
Com base nessa situação hipotética e considerando o aço como um material isotrópico, sujeito a tensão bidirecional, julgue o próximo item.
Julgue o item a seguir, relacionados à hidrostática e à hidrodinâmica.
De acordo com o princípio de Bernoulli, para um fluido incompressível em escoamento estacionário ao longo de uma linha de corrente, a soma das pressões estática, dinâmica e de altura permanece constante.
Julgue o item subsecutivo, relativo à estática e à dinâmica dos corpos rígidos.
Se uma roda de massa 10 kg e raio 0,5 m estiver sujeita a um torque de 20 N·m, então, nesse caso, a aceleração angular da roda será de 16 rad/s2.
No sistema ilustrado a seguir, água (ρ = 1.000 kg/m3) flui pelo tubo 1 a uma vazão de 20 L/s, óleo (ρ = 800 kg/m3) flui pelo tubo 2 a uma vazão de 10 L/s e uma mistura homogênea é descarregada pelo tubo 3, cuja área da seção transversal é de 30 cm2.
Com base na situação apresentada, julgue o item a seguir.
Sobre esse diagrama, considere as afirmações a seguir.
I. Na ferrita α, a solubilidade de carbono é muito baixa, em função da forma e do tamanho das posições intersticiais CCC.
II. A austenita, ou fase γ do ferro, é estável a uma temperatura de 500 ºC, mas apresenta solubilidade do carbono menor do que na ferrita α.
III. A cementita (Fe3C) forma-se quando o limite de solubilidade para o carbono na ferrita α é excedido abaixo de 727 ºC.
Está correto somente o que se afirmar em:
A viga isostática de comprimento “L” apresentada nas figuras (a) e (b) a seguir é composta por um material de módulo de elasticidade “E” e tem inércia à flexão “Iz”. Sabe-se que a extremidade B da viga tem uma deflexão quando submetida a uma carga uniforme “q” (figura a) e que, quando submetida a uma carga “P”, a mesma extremidade tem uma deflexão (figura b).
Se a viga for transformada em hiperestática pela adição de um
apoio simples na extremidade B, como mostrado na figura (c), e
dados q = 40 kN/m e L = 2 m, a reação de apoio em B será:
Respeitando os sinais das componentes de tensão, é correto afirmar que a maior tensão principal atuante é:
Assim sendo, a coordenada x do centroide da figura composta é dada por:
Um novo fluido refrigerante, com ODP igual a 0 e GWP igual a 1.300, apresenta as propriedades termodinâmicas mostradas na tabela a seguir, em que T é a temperatura do fluido, em °C, Psat é a pressão de saturação correspondente, em kPaabs, hL é a entalpia específica do líquido saturado, em kJ/kg, e hv é a entalpia específica do vapor saturado, em kJ/kg.
Nessa situação hipotética, se o calor rejeitado no condensador for de 170,1 kJ/kg, o coeficiente de performance (COP) desse ciclo de refrigeração será igual a
Um novo fluido refrigerante, com ODP igual a 0 e GWP igual a 1.300, apresenta as propriedades termodinâmicas mostradas na tabela a seguir, em que T é a temperatura do fluido, em °C, Psat é a pressão de saturação correspondente, em kPaabs, hL é a entalpia específica do líquido saturado, em kJ/kg, e hv é a entalpia específica do vapor saturado, em kJ/kg.
Considere que o fluido refrigerante descrito no texto seja usado em um ciclo de refrigeração padrão (ou ideal) em que toda troca de calor ocorra unicamente no condensador e no evaporador, com temperatura de condensação de 40 °C e temperatura de evaporação de −10 °C.
Nessa situação hipotética, se a vazão de fluido refrigerante for de 0,010 kg/s, o valor da capacidade de refrigeração desse ciclo será igual a
Um novo fluido refrigerante, com ODP igual a 0 e GWP igual a 1.300, apresenta as propriedades termodinâmicas mostradas na tabela a seguir, em que T é a temperatura do fluido, em °C, Psat é a pressão de saturação correspondente, em kPaabs, hL é a entalpia específica do líquido saturado, em kJ/kg, e hv é a entalpia específica do vapor saturado, em kJ/kg.