Questões de Concurso
Foram encontradas 5.061 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
No sistema mostrado na Figura abaixo, o coeficiente de atrito μ entre a superfície e o bloco de massa m = 500 g é igual a 0,75; a constante de rigidez da mola linear é igual a 16 kN/m; e a área do pistão do atuador é igual a 3 cm2 . Quando a pressão p é nula, a mola está indeformada.
Quando a pressão p aplicada no pistão do atuador é igual a 82,5 kPa, e a mola apresenta uma deflexão igual a 1 mm, a aceleração, em m/s2 , do bloco de massa m é igual a
Dado
g = 10 m/s2
A Figura abaixo mostra um guindaste, que consiste em um trilho horizontal indeformável, que está a uma altura H, constante, do solo, por onde se desloca um carro T. Um cabo de aço inextensível sustenta a carga P. O operador do guindaste comanda tanto a velocidade horizontal do carro T quanto a velocidade de descida/subida da carga P.
Sabendo-se que a velocidade VP da carga P em relação
ao trilho e a velocidade absoluta do carro VT são constantes
e respectivamente iguais a 0,4 m/s e 0,3 m/s, o módulo
da velocidade absoluta, em m/s, da carga P, é igual a
Um fio retilíneo longo está situado sobre o eixo Y conforme mostra a Figura abaixo. Esse fio conduz uma corrente I, no sentido negativo do eixo (– OY).
Além do campo magnético produzido pelo fio, existe um
campo magnético uniforme no espaço dado por .
A expressão do campo magnético total no ponto a, situado
a uma distância L da origem é:
Uma partícula com carga q e com velocidade igual a
entra em uma região com campos elétrico e
magnético uniformes. O campo magnético é dado por
.
Desprezando-se a massa da partícula, qual deve ser o campo elétrico na região para que a partícula se desloque em movimento retilíneo uniforme?
Duas partículas carregadas -Q e -2Q estão separadas por uma distância 3L, de acordo com a Figura a seguir.
O campo elétrico líquido, medido no ponto B situado a
uma distância L da partícula -Q, é expresso do seguinte
modo:
Na difração da luz por uma fenda única, a expressão para intensidade da luz difratada é dada por em que
a é o tamanho da fenda; e λ, o comprimento da onda da luz incidente. A figura a seguir mostra um espectro de difração de uma fenda única.
Considerando a figura precedente e as informações nela apresentadas, julgue o próximo item.
A abertura da fenda é duas vezes o comprimento de onda
da luz incidente.
A figura precedente ilustra um feixe de laser que incide em uma peça semicircular de vidro cujo índice de refração é √3, fazendo um ângulo α = 60º. Considerando que a peça de vidro esteja no ar, com índice de refração nar = 1,0, e que o senθ = 30º, julgue o item subsecutivo.
Para qualquer comprimento de onda, as ondas longitudinais
podem ser polarizadas.
A figura precedente ilustra um feixe de laser que incide em uma peça semicircular de vidro cujo índice de refração é √3, fazendo um ângulo α = 60º. Considerando que a peça de vidro esteja no ar, com índice de refração nar = 1,0, e que o senθ = 30º, julgue o item subsecutivo.
Na situação apresentada na figura, a reflexão interna total
ocorre quando α for maior que 30º.
A figura precedente ilustra um feixe de laser que incide em uma peça semicircular de vidro cujo índice de refração é √3, fazendo um ângulo α = 60º. Considerando que a peça de vidro esteja no ar, com índice de refração nar = 1,0, e que o senθ = 30º, julgue o item subsecutivo.
Não haverá raio refletido se a polarização do laser estiver paralela ao plano da folha do papel, conforme ilustrado a seguir.
O ângulo de refração é de 45º.
A figura precedente ilustra dois meios diferentes com índice de refração n1 e n2 e três raios de luz: um incidente, um refletido e um refratado. São apresentadas, a seguir, as definições geométricas relativas a essa figura.
Considerando a figura e as informações apresentadas, julgue o próximo item.
Na situação de refração, n1 a = n2 c.
A figura precedente ilustra dois meios diferentes com índice de refração n1 e n2 e três raios de luz: um incidente, um refletido e um refratado. São apresentadas, a seguir, as definições geométricas relativas a essa figura.
Considerando a figura e as informações apresentadas, julgue o próximo item.
Na situação de reflexão, a = b.
A figura precedente ilustra dois meios diferentes com índice de refração n1 e n2 e três raios de luz: um incidente, um refletido e um refratado. São apresentadas, a seguir, as definições geométricas relativas a essa figura.
Considerando a figura e as informações apresentadas, julgue o próximo item.
De acordo com o princípio de Fermat, a trajetória da luz,
ao passar de um ponto para outro, é tal, que o tempo
do percurso é o menor possível.
A figura precedente ilustra graficamente o comportamento
do ângulo de fase Φ em função da frequência de ressonância
ω = 2πf, para um circuito RLC, em que . Nessa
figura, alguns valores de Φ em função de ω estão representados.
Com base nesse gráfico e nessas informações, julgue o item que se segue.
A intensidade média de uma onda eletromagnética é
inversamente proporcional ao módulo do vetor campo elétrico.
A figura precedente ilustra graficamente o comportamento
do ângulo de fase Φ em função da frequência de ressonância
ω = 2πf, para um circuito RLC, em que . Nessa
figura, alguns valores de Φ em função de ω estão representados.
Com base nesse gráfico e nessas informações, julgue o item que se segue.
A razão entre as amplitudes máximas da componente
elétrica e da magnética de uma onda eletromagnética
é igual à velocidade da luz.
A figura precedente ilustra graficamente o comportamento
do ângulo de fase Φ em função da frequência de ressonância
ω = 2πf, para um circuito RLC, em que . Nessa
figura, alguns valores de Φ em função de ω estão representados.
Com base nesse gráfico e nessas informações, julgue o item que se segue.
A frequência de ressonância ƒ é igual a 1.000/2π Hz.
A figura II precedente mostra a representação fasorial da corrente e da voltagem instantâneas do circuito RLC ilustrado na figura I. Nesse circuito, é ilustrado um indutor de indutância L, um capacitor de capacitância C, um resistor de resistência R e uma fonte de voltagem alternada de V. Na figura II, ω = 2πf é a frequência angular de ressonância, e Φ é a fase entre o vetor amplitude de corrente I e o vetor amplitude de voltagem V, em que V = IZ. Z é a impedância do circuito. Considerando essas informações, julgue o item a seguir.
A frequência de ressonância desse circuito independe
do valor da resistência deste.
A figura II precedente mostra a representação fasorial da corrente e da voltagem instantâneas do circuito RLC ilustrado na figura I. Nesse circuito, é ilustrado um indutor de indutância L, um capacitor de capacitância C, um resistor de resistência R e uma fonte de voltagem alternada de V. Na figura II, ω = 2πf é a frequência angular de ressonância, e Φ é a fase entre o vetor amplitude de corrente I e o vetor amplitude de voltagem V, em que V = IZ. Z é a impedância do circuito. Considerando essas informações, julgue o item a seguir.
Na situação em que o sistema absorve a máxima energia,
ou seja, na condição de ressonância, o ângulo
A figura II precedente mostra a representação fasorial da corrente e da voltagem instantâneas do circuito RLC ilustrado na figura I. Nesse circuito, é ilustrado um indutor de indutância L, um capacitor de capacitância C, um resistor de resistência R e uma fonte de voltagem alternada de V. Na figura II, ω = 2πf é a frequência angular de ressonância, e Φ é a fase entre o vetor amplitude de corrente I e o vetor amplitude de voltagem V, em que V = IZ. Z é a impedância do circuito. Considerando essas informações, julgue o item a seguir.
A potência média desse circuito é dada por