Questões de Concurso
Comentadas sobre fundamentos da cinemática em física
Foram encontradas 42 questões
Tomando como fundamento o princípio da conservação de energia, a velocidade que um carrinho atinge a base, quando desce de um escorregador de altura 10m, a partir do repouso e considerando a aceleração da gravidade local g = 10 m/s2 e que 50% da energia se dissipe, tem intensidade de:
Na figura acima temos três corpos idênticos deslocando-se entre dois níveis. O corpo A cai livremente, o corpo B desce uma rampa e o corpo C desliza ao longo de um tobogã. Podemos afirmar sobre o trabalho (W) da força-peso dos corpos, desprezando as forças dissipativas em todos os movimentos, que:
O móvel da figura a seguir parte do repouso em uma superfície perfeitamente lisa. Por quanto tempo ele deverá manter-se com aceleração constante de 2 m/s no trecho OA no intuito de chegar no ponto B com velocidade nula ? Considere g = 10 m/s2.
“Os Jogos Paralímpicos mostram que não há limites no corpo humano que impeçam grandes feitos e foi isso que a Rio 2016 comprovou, já na cerimônia de abertura do evento. O norte-americano Aaron Wheelz, cadeirante, desceu uma megarrampa erguida no Maracanã, passou por dentro de um círculo de fogos de artifício e deu início à solenidade, levando o público à loucura, no Estádio do Maracanã.” Disponível em: <http://agenciabrasil.ebc.com.br/rio-2016/noticia/2016-09/atleta-cadeirante-desce-em-mega-rampa-e-levanta-publico-no-maracana>. Acesso em: 06 out. 2016.
Suponha que em uma apresentação semelhante, o atleta com sua cadeira de rodas tenha uma massa total de 70 kg. Se o atleta parte do repouso de uma altura H de 11,25 metros acima da extremidade da rampa para saltos e deixa a rampa fazendo um ângulo de 30º com a horizontal, a altura máxima h do salto com relação à extremidade da rampa será aproximadamente: (Despreze os efeitos da resistência do ar e suponha que a rampa não tenha atrito. Use g = 10 m/s2, e sin 30° = 0,5)
Imagem meramente ilustrativa. Suas dimensões não estão em escala.
Nas questões em que for necessário o uso da aceleração da gravidade, adote g = 10 m/s2 .
Quando necessário, utilize os seguintes valores para a água:
ρ = 1,0g cm3 e c = 1,0 cal g ℃
Quando necessário, adote os valores:
π = 3
sen30° = cos60° = 0,50
sen60° = cos30° = 0,87
A figura a seguir mostra o módulo do momento linear em função do tempo para uma partícula que se move ao longo de uma única direção:
Com base nestas informações, podemos afirmar que:
I. A partícula estava inicialmente em repouso.
II. A velocidade da partícula é constante nos intervalos de tempo B e D.
III. O módulo (intensidade) da força média aplicada é maior no intervalo de tempo A.
IV. A velocidade da partícula diminui no intervalo de tempo C.
Assinale a alternativa correta:
Nas questões em que for necessário o uso da aceleração da gravidade, adote g = 10 m/s2 .
Quando necessário, utilize os seguintes valores para a água:
ρ = 1,0g cm3 e c = 1,0 cal g ℃
Quando necessário, adote os valores:
π = 3
sen30° = cos60° = 0,50
sen60° = cos30° = 0,87
A figura a seguir mostra a posição em função do tempo de uma partícula que se move em uma única direção:
Com base nas informações contidas no gráfico, podemos afirmar que a partícula está em marcha-a-ré no intervalo de tempo que vai do instante correspondente do ponto:
Considere um objeto que é solto a partir do repouso nas proximidades da superfície da Terra e também está sujeito à força de resistência do ar, que é uma força que cresce com a velocidade do objeto até se igualar à força peso. Desprezando qualquer outro efeito sobre o objeto em queda, é correto afirmar que:
Suponha que a oscilação de um bloco fixado em uma mola, é dada por d = 10cos (6πt) em que t é medido em segundos e ݀d em centímetros. Em quanto tempo o bloco executa uma oscilação completa?
Nessas condições, a relação entre a resistência do solo e a pressão da placa é
Sabe-se que na disciplina de física o trabalho da força elástica, cuja unidade é o joule, pode ser encontrado a partir da área entre o gráfico da função Fel(x) e o eixo horizontal x. Tendo em vista apenas o intervalo 0,02 m ≤ x ≤ 0,05 m para encontrar a área, assinale a alternativa que corresponde corretamente ao trabalho realizado pela força elástica neste intervalo.
Sabendo que a velocidade final da partícula é de 30m/s, o tempo de atuação da força sobre a partícula foi de
Dados: √2 = 1,4; √3 = 1,7; √10 = 3,2
Sabendo que a velocidade do ponto A é de 1,60m/s, a velocidade v é de
vx(t) = 10 – t ay(t) = – 2,0m/s2
nas quais x e y são as coordenadas, em metros, da posição da partícula; vx é a velocidade da partícula na direção x em m/s; ay é a aceleração da partícula na direção y; e t é o tempo em segundos.
Sabendo que x = 0 e y = 0 em t = 0, e que a máxima distância positiva em y é atingida em t = 2s, a distância da partícula em relação à origem em t = 4 s é
(Texto adaptado de https://www1.folha.uol.com.br/ciencia/2023/01/novo-planeta-que-pode-ser-habitavel-edescoberto-pela-nasa.shtml).
Embora a distância até o sistema TOI 700 seja impraticável de ser percorrida com a tecnologia atual, em filmes de ficção científica é comum a ideia de utilizar a dobra espacial para encurtar o tempo e a distância das viagens espaciais. Considerando um cenário hipotético no qual uma espaçonave pudesse realizar o percurso em um intervalo de tempo de 20 anos contados a partir do referencial da espaçonave, podemos explorar a ideia da dobra espacial. Nesse contexto fictício, a dobra espacial permitiria encurtar o espaço-tempo e criar um "atalho" entre dois pontos distantes no espaço. Dada essa premissa, qual seria, aproximadamente, a velocidade necessária para a nave conseguir realizar essa proeza?
No referencial de repouso do elétron, quanto tempo passa desde que é produzido até ser detectado, em nano- -segundos?
Dado
c = 3×108 m/s
As coordenadas da posição temporal de uma partícula de massa m em movimento circular são descritas, em metros, por r: 3 [i cos(ωt) + j sen (ω · t) + k], em que i, j e k são versores correspondentes, respectivamente, às direções x, y e z de um sistema de coordenadas cartesianas, ω é o módulo de sua velocidade angular e t é o tempo, em segundos.
Tendo como referência a situação precedente, e considerando que o período de rotação da referida partícula seja de 20 s, julgue o item que se segue.
O torque da partícula, com relação à origem de coordenadas, é = -9 · m · ω2 [ -i sen(ω · t) + jcos(ω · t)].
As coordenadas da posição temporal de uma partícula de massa m em movimento circular são descritas, em metros, por r: 3 [i cos(ωt) + j sen (ω · t) + k], em que i, j e k são versores correspondentes, respectivamente, às direções x, y e z de um sistema de coordenadas cartesianas, ω é o módulo de sua velocidade angular e t é o tempo, em segundos.
Tendo como referência a situação precedente, e considerando que o período de rotação da referida partícula seja de 20 s, julgue o item que se segue.
A taxa de variação temporal do momento angular da partícula é = -9 · m · ω2 [ -i sen (ω · t) + jcos (ω · t)].
As coordenadas da posição temporal de uma partícula de massa m em movimento circular são descritas, em metros, por r: 3 [i cos(ωt) + j sen (ω · t) + k], em que i, j e k são versores correspondentes, respectivamente, às direções x, y e z de um sistema de coordenadas cartesianas, ω é o módulo de sua velocidade angular e t é o tempo, em segundos.
Tendo como referência a situação precedente, e considerando que o período de rotação da referida partícula seja de 20 s, julgue o item que se segue.
O vetor aceleração da partícula, cujo módulo é superior a
1 m/s2
, tem sua origem no sistema de coordenadas
cartesianas e aponta na direção do versor k.