Questões de Concurso
Comentadas sobre leis de newton em física
Foram encontradas 122 questões
Acerca da mecânica newtoniana, julgue o item a seguir.
A função vetorial F = xyi + yj é conservativa.
Acerca da mecânica newtoniana, julgue o item a seguir.
O movimento circular uniforme é assim chamado por não
envolver aceleração.
Acerca da mecânica newtoniana, julgue o item a seguir.
As leis de Newton para forças conservativas não diferenciam
um tempo que flui do passado para o futuro daquele que flui
do futuro para o passado, ou seja, são invariantes por inversão
temporal.
Acerca da mecânica newtoniana, julgue o item a seguir.
Embora as componentes de um vetor possam mudar quando
se muda a origem do sistema de coordenadas, a segunda lei
de Newton, escrita na forma vetorial, mantém exatamente
a mesma forma.
Acerca da mecânica newtoniana, julgue o item a seguir.
A mecânica newtoniana é válida em referenciais acelerados.
Uma cunha de massa M repousa sobre o topo horizontal de uma mesa sem atrito. Um bloco de massa m é colocado sobre a cunha, conforme ilustrado na figura a seguir.
Sendo µ o coeficiente de atrito estático entre a cunha e o bloco,
qual deve ser o módulo F da força mínima aplicada sobre a
cunha, para que o bloco permaneça em repouso em relação a
ela?
Considere as duas situações seguintes de um bloco apoiado sobre um plano e as forças, peso e normal, que atuam sobre cada um deles.
I – um bloco de massa m apoiado sobre uma superfície horizontal.
II – um bloco de massa m apoiado sobre um plano inclinado em um ângulo θ.
Considerando a terceira lei de Newton e as forças que atuam
sobre o bloco,
As figuras precedentes ilustram um corpo de massa Mc suspenso por um mesmo dinamômetro ideal (representado pela mola), em duas situações diversas. Na primeira delas, ao ar livre, o dinamômetro indica um valor de 50 N. Na segunda situação, a massa Mc está imersa em um tanque com água, e o dinamômetro indica um valor de 25 N.
Nessa situação, considerando-se que 10 m/s² seja a aceleração da
gravidade e que 1 g/cm³ seja a densidade da água, os valores do
volume do corpo, em m³, e de sua massa específica, em g/cm³, são,
respectivamente, iguais a
Um homem sustenta uma carga de 50,0 kg por meio de uma corda e uma roldana, como mostra a Figura abaixo.
Sabe-se o seguinte: a corda e a roldana são ideais; o sistema está em equilíbrio estático; tanto o homem quanto a carga encontram-se em repouso; o ângulo entre a corda e a horizontal é de 53,0°.
O valor aproximado, em N, da resultante das forças de atrito entre o calçado do homem e o solo, é
Dados
aceleração da gravidade = 10,0 mˑs-2
sen 53,0° = 0,800
cos 53,0° = 0,600
O elevador mostrado na Figura abaixo é utilizado para ajudar operários a transportar sacos de cimento do alto de uma plataforma para o chão.
O sistema é abandonado, a partir do repouso, da posição mostrada na Figura, e a cabine desce em trajetória vertical.
Se os atritos são desprezíveis e os cabos ideais, os valores aproximados da tração na corda e aceleração da cabine, durante a descida, são, respectivamente, em N e m -s2,
Dados
aceleração da gravidade g = 10,0 m .s2;
massa do contrapeso = 25,0 kg;
massa da cabine = 5,00 kg;
massa do saco de cimento = 50,0 kg.
As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. Se aumentar a distância entre essas bobinas, o campo magnético resultante também aumenta.
As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. Se Km for a constante elástica da mola, então o valor medido da força magnética atuando na espira quadrada é Km'(l - l0).
As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. Na figura II, o vetor indução magnética gerado pelas bobinas tem módulo diretamente proporcional à corrente IB e sua direção é perpendicular ao papel, sentido entrando na folha.
As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. A figura a seguir mostra os sentidos corretos da corrente IB nas bobinas da figura I, para que o campo magnético resultante na região da espira quadrada seja a soma dos campos de cada bobina e maior que zero.
A figura a seguir representa duas forças verticais que incidem sobre uma placa quadrada horizontal.
A força resultante e o momento em torno do eixo x e z são,
respectivamente:
Uma ambulância transporta um paciente recém-operado ao longo de uma estrada onde há uma lombada aproximadamente circular de centro em C e 40 m de raio, como mostra a figura.
Se a ambulância passar pelo topo da lombada com uma velocidade muito elevada, pode perder o contato com a estrada e o impacto que irá ocorrer quando os pneus voltarem a tocar o piso provocará um solavanco que não fará bem ao paciente.
Considerando g = 10 m/s2, o valor máximo da velocidade com
que a ambulância pode passar pelo topo da lombada sem perder
o contato com a estrada é de
O instante em que o objeto atinge velocidade máxima é
Durante o movimento, o fio pode não suportar a tensão a que é submetido e se romper. Para que isso não ocorra, sendo g o módulo da aceleração da gravidade local, o fio deve ser capaz de suportar uma tensão de até