Questões de Concurso
Sobre movimento retilíneo uniformemente variado em física
Foram encontradas 120 questões
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .
Se a velocidade inicial do carrinho é igual a zero, então, ao
subir o plano, o carrinho atingirá uma velocidade menor que
5 m/s no vértice superior do trilho.
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .
Desprezando-se o atrito e considerando-se que a esfera tenha
massa igual a 5 g, é correto afirmar que, caso a corda se rompa
quando o carrinho estiver no topo do plano, a esfera atingirá o
solo com energia superior a 20 × 10-3
J.
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .
Considere que o carrinho se choque com uma mola, de
constante de mola igual a K, na parte superior do trilho e a
comprima por uma distância X. Suponha também que a força
de atrito entre carrinho e trilho tenha sido suficiente para gastar
toda a energia cinética que o carrinho possuía imediatamente
antes do choque. Nessa situação, se K⋅X = m⋅g, então o
carrinho ficará parado, preso à mola, que estará comprimida
por uma distância X.
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .
Na ausência de atrito com os trilhos, se o carrinho se chocasse
com uma mola na parte superior do trilho, ele voltaria no
sentido oposto, impelido pela mola, mas não chegaria ao
mesmo ponto de onde partiu, devido à presença da força para
cima introduzida pela presença da esfera.
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Considere que, no arranjo apresentado anteriormente, a massa da pequena esfera seja suficiente para puxar o carrinho para cima, ao longo da superfície do plano inclinado, com uma força de 0,3 N. Considere, ainda, que a massa do carrinho seja de 15 g, que o plano tenha altura de 40 cm e inclinação igual a 30°, e que a roldana não atrapalhe o movimento do carro ao chegar ao vértice superior do trilho. Tendo como referência essas informações, julgue o item que se segue, sabendo que sen (30°) = 0,5 e assumindo que a aceleração da gravidade local seja 10 m/s2 .
Desconsiderando o atrito entre o plano e o carrinho, se o
carrinho parar no topo do trilho e a corda se romper, ele
atingirá o solo com velocidade inferior a 3 m/s.
A figura acima ilustra um trilho de ar comprimido, constituído de duas placas de alumínio encaixadas de modo a formar uma estrutura de seção reta triangular. No interior da estrutura, passa uma corrente de ar comprimido que sai por 100 orifícios, de raios iguais a 0,001 m, localizados nos dois lados das placas que formam o trilho. O ar entra na estrutura, a partir de uma abertura circular de raio 1 cm, a uma velocidade igual a 1 m/s. Um carrinho de massa M, que pode deslizar sobre os trilhos, está preso a uma pequena esfera de massa m, por meio de um fio rígido e inextensível de massa desprezível e que passa por uma roldana de massa também desprezível. O trilho está inclinado de um ângulo θ em relação à horizontal. O coeficiente de atrito cinético do carro com as placas metálicas do trilho é igual a μb, na ausência de ar comprimido, e igual a μa, após a inserção de ar comprimido na estrutura.
Com base nessas informações, julgue o item.
A variação de temperatura (ΔT) que o carrinho irá experimentar no processo de subida por uma distância D,paralela à superfície do plano, será ΔT = M⋅g⋅μa⋅cosθ/ca, em que ca é o calor específico do carrinho, e g, a aceleração da gravidade.
Obs.: considere g = 10 m/s2 .
Qual é, aproximadamente, em metros, a distância percorrida pelo carro até alcançar o ônibus?
Uma embarcação, movendo-se em linha reta com velocidade constante de 10 m/s, inicia sua aproximação de
um porto, que se encontra a uma distância de 100 m da embarcação, com desaceleração constante.
Ao chegar ao porto, a velocidade da embarcação é zero.
Assinale a alternativa que indica o tempo necessário para que o veículo desacelere para 100 mph no ar padrão.
Sabendo-se que, no instante em que os cabos engancham no avião, a velocidade relativa entre ele e o porta-aviões é de 278,9 km/h, a distância, em metros, percorrida pelo avião entre o referido instante e o momento em que ele para é
Se no ponto X sua velocidade é 360 km/h, a distância, em metros, entre os pontos X e Y é
A aceleração média, em m/s2 , para esse corpo, entre t = 1 e t = 5s, é de
No referido trecho, a aceleração média do avião, em m/s2 , é
Qual é, aproximadamente, em N, o módulo da resultante das forças de interação entre o carro e o motorista durante a frenagem do carro?