Questões de Concurso Comentadas sobre física
Foram encontradas 2.203 questões
Assinale a alternativa que preenche, correta e respectivamente, as lacunas do trecho acima.
Qual o valor indicado pelo voltímetro?
Com base nessa situação, assinale a alternativa que descreve a imagem vista por um observador situado no ponto r = (0, 0, h) para t = 0, momento em que a posição medida dos pontos da barra indica que y = y' = 0.
A aceleração angular adquirida pela barra, devido à aplicação da força F, é de:
(Texto adaptado de https://www1.folha.uol.com.br/ciencia/2023/01/novo-planeta-que-pode-ser-habitavel-edescoberto-pela-nasa.shtml).
Embora a distância até o sistema TOI 700 seja impraticável de ser percorrida com a tecnologia atual, em filmes de ficção científica é comum a ideia de utilizar a dobra espacial para encurtar o tempo e a distância das viagens espaciais. Considerando um cenário hipotético no qual uma espaçonave pudesse realizar o percurso em um intervalo de tempo de 20 anos contados a partir do referencial da espaçonave, podemos explorar a ideia da dobra espacial. Nesse contexto fictício, a dobra espacial permitiria encurtar o espaço-tempo e criar um "atalho" entre dois pontos distantes no espaço. Dada essa premissa, qual seria, aproximadamente, a velocidade necessária para a nave conseguir realizar essa proeza?
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
A radiação do laser é emitida em determinada direção com um feixe de luz estreito, à medida que se propaga.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
Se os espelhos que formam a cavidade do laser refletem 100% e 95% da intensidade da luz, respectivamente, os dois espelhos não refletem totalmente os feixes, pois um deles deve deixar passar a luz, o chamado feixe emergente.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
Esse laser emite mais que 2,00 × 1020 fótons por segundo.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
O comprimento de onda emitido por esse laser é maior que 1.200 nm.
O interferômetro de Michelson é utilizado para medir comprimentos de onda da luz com grande precisão, a partir da contagem do número de franjas que se deslocam na figura de interferência.
A análise dos fenômenos de interferência e de difração mostra que, em mecânica quântica, não se pode simplesmente trabalhar com leis de probabilidade, como se faz nos fenômenos aleatórios clássicos.
Quanto mais lenta for a velocidade do referencial em relação à velocidade da luz, mais perceptível será a dilatação do tempo.
O comprimento medido em um referencial inercial em relação ao qual o corpo se move na direção da dimensão que está sendo medida é sempre maior que o comprimento próprio.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
No experimento realizado, não ocorre o fenômeno
da difração.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Sabendo-se que o espaçamento entre as franjas de
interferência é de 2 × 10−6 μm, é correto afirmar que o
comprimento de onda da onda associada aos elétrons é
de 5 pm.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Se a velocidade dos elétrons fosse multiplicada por dois, o
comprimento de onda associado seria reduzido em 50%.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Para que haja interferências entre duas ondas luminosas, a
diferença de fase entre elas deve variar com o tempo.