Questões de Concurso Comentadas sobre física
Foram encontradas 1.984 questões
Um fio retilíneo longo está situado sobre o eixo Y conforme mostra a Figura abaixo. Esse fio conduz uma corrente I, no sentido negativo do eixo (– OY).
Além do campo magnético produzido pelo fio, existe um campo magnético uniforme no espaço dado por .
A expressão do campo magnético total no ponto a, situado
a uma distância L da origem é:
Duas partículas carregadas -Q e -2Q estão separadas por uma distância 3L, de acordo com a Figura a seguir.
O campo elétrico líquido, medido no ponto B situado a
uma distância L da partícula -Q, é expresso do seguinte
modo:
Na difração da luz por uma fenda única, a expressão para intensidade da luz difratada é dada por em que a é o tamanho da fenda; e λ, o comprimento da onda da luz incidente. A figura a seguir mostra um espectro de difração de uma fenda única.
Considerando a figura precedente e as informações nela apresentadas, julgue o próximo item.
A abertura da fenda é duas vezes o comprimento de onda
da luz incidente.
A figura precedente ilustra um feixe de laser que incide em uma peça semicircular de vidro cujo índice de refração é √3, fazendo um ângulo α = 60º. Considerando que a peça de vidro esteja no ar, com índice de refração nar = 1,0, e que o senθ = 30º, julgue o item subsecutivo.
Na situação apresentada na figura, a reflexão interna total
ocorre quando α for maior que 30º.
A figura precedente ilustra um feixe de laser que incide em uma peça semicircular de vidro cujo índice de refração é √3, fazendo um ângulo α = 60º. Considerando que a peça de vidro esteja no ar, com índice de refração nar = 1,0, e que o senθ = 30º, julgue o item subsecutivo.
Não haverá raio refletido se a polarização do laser estiver paralela ao plano da folha do papel, conforme ilustrado a seguir.
O ângulo de refração é de 45º.
A figura precedente ilustra dois meios diferentes com índice de refração n1 e n2 e três raios de luz: um incidente, um refletido e um refratado. São apresentadas, a seguir, as definições geométricas relativas a essa figura.
Considerando a figura e as informações apresentadas, julgue o próximo item.
Na situação de refração, n1 a = n2 c.
A figura precedente ilustra dois meios diferentes com índice de refração n1 e n2 e três raios de luz: um incidente, um refletido e um refratado. São apresentadas, a seguir, as definições geométricas relativas a essa figura.
Considerando a figura e as informações apresentadas, julgue o próximo item.
Na situação de reflexão, a = b.
A figura precedente ilustra dois meios diferentes com índice de refração n1 e n2 e três raios de luz: um incidente, um refletido e um refratado. São apresentadas, a seguir, as definições geométricas relativas a essa figura.
Considerando a figura e as informações apresentadas, julgue o próximo item.
De acordo com o princípio de Fermat, a trajetória da luz,
ao passar de um ponto para outro, é tal, que o tempo
do percurso é o menor possível.
A figura precedente ilustra graficamente o comportamento
do ângulo de fase Φ em função da frequência de ressonância
ω = 2πf, para um circuito RLC, em que . Nessa
figura, alguns valores de Φ em função de ω estão representados.
Com base nesse gráfico e nessas informações, julgue o item que se segue.
A intensidade média de uma onda eletromagnética é
inversamente proporcional ao módulo do vetor campo elétrico.
A figura precedente ilustra graficamente o comportamento
do ângulo de fase Φ em função da frequência de ressonância
ω = 2πf, para um circuito RLC, em que . Nessa
figura, alguns valores de Φ em função de ω estão representados.
Com base nesse gráfico e nessas informações, julgue o item que se segue.
A razão entre as amplitudes máximas da componente
elétrica e da magnética de uma onda eletromagnética
é igual à velocidade da luz.
A figura precedente ilustra graficamente o comportamento
do ângulo de fase Φ em função da frequência de ressonância
ω = 2πf, para um circuito RLC, em que . Nessa
figura, alguns valores de Φ em função de ω estão representados.
Com base nesse gráfico e nessas informações, julgue o item que se segue.
A frequência de ressonância ƒ é igual a 1.000/2π Hz.
A figura II precedente mostra a representação fasorial da corrente e da voltagem instantâneas do circuito RLC ilustrado na figura I. Nesse circuito, é ilustrado um indutor de indutância L, um capacitor de capacitância C, um resistor de resistência R e uma fonte de voltagem alternada de V. Na figura II, ω = 2πf é a frequência angular de ressonância, e Φ é a fase entre o vetor amplitude de corrente I e o vetor amplitude de voltagem V, em que V = IZ. Z é a impedância do circuito. Considerando essas informações, julgue o item a seguir.
Na situação em que o sistema absorve a máxima energia,
ou seja, na condição de ressonância, o ângulo
A figura II precedente mostra a representação fasorial da corrente e da voltagem instantâneas do circuito RLC ilustrado na figura I. Nesse circuito, é ilustrado um indutor de indutância L, um capacitor de capacitância C, um resistor de resistência R e uma fonte de voltagem alternada de V. Na figura II, ω = 2πf é a frequência angular de ressonância, e Φ é a fase entre o vetor amplitude de corrente I e o vetor amplitude de voltagem V, em que V = IZ. Z é a impedância do circuito. Considerando essas informações, julgue o item a seguir.
A potência média desse circuito é dada por
A figura precedente é constituída de um solenoide
considerado ideal, de indutância L e n espiras por unidade de
comprimento, conectado em série a um resistor R e a um capacitor
carregado, de capacitância C. A carga no capacitor é q = Cε,
em que ε é a voltagem máxima utilizada para carregar o circuito.
Em t = 0, a chave é ligada.
Com base nessas informações, julgue o item subsecutivo.
A equação relacionada a esse circuito, no qual q é a carga e t o tempo, pode ser expressa por
A figura precedente é constituída de um solenoide
considerado ideal, de indutância L e n espiras por unidade de
comprimento, conectado em série a um resistor R e a um capacitor
carregado, de capacitância C. A carga no capacitor é q = Cε,
em que ε é a voltagem máxima utilizada para carregar o circuito.
Em t = 0, a chave é ligada.
Com base nessas informações, julgue o item subsecutivo.
O campo no interior do solenoide, em função da corrente i,
é dado por B = μ0 n i, em que μ0 é a permeabilidade
magnética do meio.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
O campo magnético é igual a 3/2 T.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
O sentido em que a corrente percorre a espira é o horário.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
Caso o circuito seja percorrido por uma corrente de 1 A,
o número de elétrons que passam, em 1 segundo,
por determinada região da espira é menor que 1019.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
A corrente que percorre o circuito é de 1,5 amperes.