Questões de Concurso Sobre física
Foram encontradas 7.492 questões
Sendo A um amperímetro e V um voltímetro, ambos ideais, as respectivas leituras, em ampères e em volts, que esses aparelhos fornecem, são
Dados: - calor específico do gelo cgelo = 0,5 cal/g.°C
- calor especifico da água cágua = 1,0 cal/g.°C
- calor latente de fusão do gelo LF = 80 cal/g
Sabendo-se que a fonte térmica que cede calor ao gelo tem potência nominal constante de 305 cal/s, e que todo o calor transferido ao bloco seja por ele utilizado, exclusivamente, ou para variar a sua temperatura ou para mudar seu estado físico, o intervalo de tempo, em segundos, necessário para que seja alcançado o desejado, é
Com base no gráfico, a temperatura referente à ebulição da água, sob pressão normal, na escala A, é
Dados: - Calor latente de fusão do gelo LF = 80 cal/g
- Condutibilidade térmica do aço KAÇO = 0,1 cal/s.cm.oC
Considere que: (1) o regime seja estacionário; (2) não haja perdas de calor lateralmente; (3) o gelo e o vapor d’água só troquem calor com a barra. O valor da temperatura, em Celsius, em um ponto de uma seção transversal da barra, situado a 10 cm do gelo, e o valor da massa de gelo, em gramas, que se funde, após 40 min, são, respectivamente,
O instante de abertura do paraquedas e os dois intervalos de tempo em que, no movimento, há aceleração não nula são, respectivamente,
Um carregador deixa descer um bloco de 200 N sobre uma superfície inclinada, percorrendo 2m em movimento retilíneo e uniforme, exercendo uma tração de intensidade T em sentido ascendente e na direção da corda paralela à superfície inclinada, conforme a figura acima. Sabendo-se que a força de atrito dinâmica entre o bloco e a superfície é igual a F, e que o deslocamento vertical deste bloco é de 1m, a intensidade da soma dos trabalhos exercidos por T e F, em joules, é igual a
I – Em um meio dispersivo, a velocidade de grupo pode ser maior ou menor que a velocidade de fase.
II – Em um meio não dispersivo, a velocidade de fase é sempre maior que a velocidade de grupo.
III – A frequência, a velocidade e o comprimento de onda variam quando há mudança de meio.
IV – Uma onda contendo diferentes frequências propaga-se sem perder sua forma em um meio não dispersivo.
Está correto APENAS o que se afirma em
I – O Princípio de Huygens estabelece que cada ponto em uma frente de onda funciona como uma fonte de ondas secundárias (elementares), que compõe a frente de onda em uma nova posição ao longo da propagação.
II – A difração é um fenômeno que ocorre com as ondas quando elas passam por um orifício ou contornam um objeto cuja dimensão é da mesma ordem de grandeza que o seu comprimento de onda.
III – O Princípio de Fermat estabelece que a luz se propaga entre dois pontos sem obstáculos no menor tempo possível. No caso da sísmica, como consequência deste princípio, o caminho percorrido por uma onda em um meio heterogêneo é uma linha reta.
IV – O Princípio da Superposição estabelece que a combinação linear de diferentes entradas de um sistema linear e invariante no tempo é igual a esta combinação aplicada às saídas geradas por cada entrada original separadamente. Desta forma, o efeito de um conjunto de ondas sísmicas em meios elásticos pode ser analisado pela soma dos seus efeitos individuais.
V – O Princípio da Reciprocidade diz que a permuta das posições ocupadas pela fonte e pelo receptor não altera a trajetória do raio. Tal princípio é válido somente em meios homogêneos.
São corretas as afirmativas
Dois corpos de massas M e 2M estão inicialmente em repouso e suspensos por um fio inextensível e de massa desprezível, conforme a figura acima. A polia fixa também é ideal e de massa desprezível, e a aceleração gravitacional local é de intensidade g. Decorrido um intervalo de tempo t, desde o início do movimento destes corpos, a soma dos módulos de seus deslocamentos verticais é igual a
. No entanto, descobriu-se que todas as balanças subtraíram duas (2) unidades de massa para cada indivíduo, independentemente de sua massa. Assim, o desvio padrão esperado, após as devidas correções, é
Um automóvel de massa m = 800,0 kg inicia no ponto A a descida sobre uma pista inclinada, com velocidade escalar inicial VA = 10,0m/s conforme a figura acima. O atrito desse movimento, adicionado ao uso parcial de seu sistema de freios, reduz em 50% sua energia mecânica, até que o ponto B seja alcançado. Nestas condições, a energia cinética em B, medida em kJ, será igual a
Dado: g: 10,0m/s2
I – sendo a1 e a2 as velocidades da onda P para os meios 1 e 2, e b1 e b2 as velocidades da onda S para os meios 1 e 2, os ângulos de refração e reflexão respeitam à equação senθ1/a1 = senθ2 /a2 = senλ1 /b2 = senλ2/b1 , conhecida como lei de Snell.
II – a onda refratada sempre está em concordância de fase em relação à onda incidente. Em relação à onda refletida, se o meio no qual ela penetrou tiver impedância menor do que o meio do qual ela veio, as ondas refletida e refratada estarão em oposição de fase.
III – as ondas de incidência normal, quando refletidas e refratadas, sofrem pequeno desvio em sua direção de propagação.
IV – os ângulos de refração e de reflexão da onda S são sempre menores que os da onda P quando estas são geradas pela mesma onda incidente.
Está correto APENAS o que se afirma em
Na figura acima, tem-se uma fonte de ondas harmônicas, representada por asterisco, e um receptor, representado por um ponto. Considerando a amplitude da fonte igual a uma unidade, e a velocidade de propagação do meio 1 igual a 2000 m/s, a atenuação provocada pela divergência esférica e o tempo de propagação da onda refletida são, respectivamente,
Na figura acima estão dispostas duas cargas elétricas de mesmo valor absoluto e sinais opostos, fixas na extremidade de um segmento horizontal AB e num ponto P sobre a mediatriz do segmento AB. Quanto ao vetor campo elétrico resultante no ponto P , a(o)