Questões de Concurso Sobre física
Foram encontradas 7.483 questões
Com base nessa situação, assinale a alternativa que descreve a imagem vista por um observador situado no ponto r = (0, 0, h) para t = 0, momento em que a posição medida dos pontos da barra indica que y = y' = 0.
A aceleração angular adquirida pela barra, devido à aplicação da força F, é de:
(Texto adaptado de https://www1.folha.uol.com.br/ciencia/2023/01/novo-planeta-que-pode-ser-habitavel-edescoberto-pela-nasa.shtml).
Embora a distância até o sistema TOI 700 seja impraticável de ser percorrida com a tecnologia atual, em filmes de ficção científica é comum a ideia de utilizar a dobra espacial para encurtar o tempo e a distância das viagens espaciais. Considerando um cenário hipotético no qual uma espaçonave pudesse realizar o percurso em um intervalo de tempo de 20 anos contados a partir do referencial da espaçonave, podemos explorar a ideia da dobra espacial. Nesse contexto fictício, a dobra espacial permitiria encurtar o espaço-tempo e criar um "atalho" entre dois pontos distantes no espaço. Dada essa premissa, qual seria, aproximadamente, a velocidade necessária para a nave conseguir realizar essa proeza?
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
A radiação do laser é emitida em determinada direção com um feixe de luz estreito, à medida que se propaga.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
Se os espelhos que formam a cavidade do laser refletem 100% e 95% da intensidade da luz, respectivamente, os dois espelhos não refletem totalmente os feixes, pois um deles deve deixar passar a luz, o chamado feixe emergente.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
Esse laser emite mais que 2,00 × 1020 fótons por segundo.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
O comprimento de onda emitido por esse laser é maior que 1.200 nm.
Determinadas grandezas físicas que classicamente podem tomar um conjunto discreto de valores adotam, na mecânica quântica, apenas valores contínuos.
O interferômetro de Michelson é utilizado para medir comprimentos de onda da luz com grande precisão, a partir da contagem do número de franjas que se deslocam na figura de interferência.
A análise dos fenômenos de interferência e de difração mostra que, em mecânica quântica, não se pode simplesmente trabalhar com leis de probabilidade, como se faz nos fenômenos aleatórios clássicos.
Os fenômenos quânticos são de natureza aleatória, de forma que o resultado de um experimento só pode ser previsto probabilisticamente.
Quanto mais lenta for a velocidade do referencial em relação à velocidade da luz, mais perceptível será a dilatação do tempo.
O comprimento medido em um referencial inercial em relação ao qual o corpo se move na direção da dimensão que está sendo medida é sempre maior que o comprimento próprio.
O tempo medido de um fenômeno é sempre maior ou igual ao seu tempo próprio.
Quando dois eventos ocorrem em um mesmo lugar em um referencial inercial, o intervalo de tempo entre os eventos medido nesse referencial é chamado de tempo próprio.
A velocidade da luz independe do referencial adotado.