Questões de Concurso Sobre inglês
Foram encontradas 17.572 questões
TEXT I
LEARNING LANGUAGE: NEWINSIGHTS INTO HOWBRAIN FUNCTIONS
For most native English-speakers, learning the Mandarin Chinese language from scratch is no easy task.
Learning it in a class that essentially compresses a one-semester college course into a single month of intensive instruction -- and agreeing to have your brain scanned before and after -- might seem even more daunting.
But the 24 Americans who did just that have enabled University of Delaware cognitive neuroscientist Zhenghan Qi and her colleagues to make new discoveries about how adults learn a foreign language.
The study, published in May in the journal NeuroImage, focused on the roles of the brain's left and right hemispheres in language acquisition. The findings could lead to instructional methods that potentially improve students' success in learning a new language.
"The left hemisphere is known as the language-learning part of the brain, but we found that it was the right hemisphere that determined the eventual success" in learning Mandarin, said Qi, assistant professor of linguistics and cognitive science.
"This was new," she said. "For decades, everyone has focused on the left hemisphere, and the right hemisphere has been largely
overlooked."
The left hemisphere is undoubtedly important in language learning, Qi said, noting that clinical research on individuals with speech disorders has indicated that the left side of the brain is in many ways the hub of language processing.
But, she said, before any individuals -- infants learning their native language or adults learning a second language -- begin
processing such aspects of the new language as vocabulary and grammar, they must first learn to identify its basic sounds or
phonological elements.
It's during that process of distinguishing "acoustic details" of sounds where the right side of the brain is key, according to the new findings.
Researchers began by exposing the 24 participants in the study to pairs of sounds that were similar but began with different consonants, such as "bah" and "nah," and having them describe the tones, Qi said.
"We asked: Were the tones of those two sounds similar or different?" she said. "We used the brain activation patterns during this task to predict who would be the most successful learners" of the new language.
The study continued by teaching the participants in a setting designed to replicate a college language class, although the usual semester was condensed into four weeks of instruction. Students attended class for three and a half hours a day, five days a week, completed homework assignments and took tests.
"Our research is the first to look at attainment and long-term retention of real-world language learned in a classroom setting, which is how most people learn a new language," Qi said.
By scanning each participant's brain with functional MRI (magnetic resonance imaging) at the beginning and end of the project, the scientists were able to see which part of the brain was most engaged while processing basic sound elements in Mandarin. To their surprise, they found that -- although, as expected, the left hemisphere showed a substantial increase of activation later in the learning process -- the right hemisphere in the most successful learners was most active in the early, sound-recognition stage.
"It turns out that the right hemisphere is very important in processing foreign speech sounds at the beginning of learning," Qi said. She added that the right hemisphere's role then seems to diminish in those successful learners as they continue learning the language.
Additional research will investigate whether the findings apply to those learning other languages, not just Mandarin. The eventual goal is to explore whether someone can practice sound recognition early in the process of learning a new language to potentially improve their success.
"We found that the more active the right hemisphere is, the more sensitive the listener is to acoustic differences in sound," Qi said. "Everyone has different levels of activation, but even if you don't have that sensitivity to begin with, you can still learn successfully if your brain is plastic enough."
Researchers can't say for certain how to apply these findings to real-life learning, but when it comes down to it, "Adults are trainable," Qi said. "They can train themselves to become more sensitive to foreign speech sounds."
( S o u r c e : U n i v e r s i t y o f D e l a w a r e . " L e a r n i n g l a n g u a g e : N e w i n s i g h t s i n t o h o w b r a i n f u n c t i o n s . " S c i e n c e D a i l y .<www.sciencedaily.com/releases/2019/05/190508093716.htm> ScienceDaily, 8 May 2019).
TEXT I
LEARNING LANGUAGE: NEWINSIGHTS INTO HOWBRAIN FUNCTIONS
For most native English-speakers, learning the Mandarin Chinese language from scratch is no easy task.
Learning it in a class that essentially compresses a one-semester college course into a single month of intensive instruction -- and agreeing to have your brain scanned before and after -- might seem even more daunting.
But the 24 Americans who did just that have enabled University of Delaware cognitive neuroscientist Zhenghan Qi and her colleagues to make new discoveries about how adults learn a foreign language.
The study, published in May in the journal NeuroImage, focused on the roles of the brain's left and right hemispheres in language acquisition. The findings could lead to instructional methods that potentially improve students' success in learning a new language.
"The left hemisphere is known as the language-learning part of the brain, but we found that it was the right hemisphere that determined the eventual success" in learning Mandarin, said Qi, assistant professor of linguistics and cognitive science.
"This was new," she said. "For decades, everyone has focused on the left hemisphere, and the right hemisphere has been largely
overlooked."
The left hemisphere is undoubtedly important in language learning, Qi said, noting that clinical research on individuals with speech disorders has indicated that the left side of the brain is in many ways the hub of language processing.
But, she said, before any individuals -- infants learning their native language or adults learning a second language -- begin
processing such aspects of the new language as vocabulary and grammar, they must first learn to identify its basic sounds or
phonological elements.
It's during that process of distinguishing "acoustic details" of sounds where the right side of the brain is key, according to the new findings.
Researchers began by exposing the 24 participants in the study to pairs of sounds that were similar but began with different consonants, such as "bah" and "nah," and having them describe the tones, Qi said.
"We asked: Were the tones of those two sounds similar or different?" she said. "We used the brain activation patterns during this task to predict who would be the most successful learners" of the new language.
The study continued by teaching the participants in a setting designed to replicate a college language class, although the usual semester was condensed into four weeks of instruction. Students attended class for three and a half hours a day, five days a week, completed homework assignments and took tests.
"Our research is the first to look at attainment and long-term retention of real-world language learned in a classroom setting, which is how most people learn a new language," Qi said.
By scanning each participant's brain with functional MRI (magnetic resonance imaging) at the beginning and end of the project, the scientists were able to see which part of the brain was most engaged while processing basic sound elements in Mandarin. To their surprise, they found that -- although, as expected, the left hemisphere showed a substantial increase of activation later in the learning process -- the right hemisphere in the most successful learners was most active in the early, sound-recognition stage.
"It turns out that the right hemisphere is very important in processing foreign speech sounds at the beginning of learning," Qi said. She added that the right hemisphere's role then seems to diminish in those successful learners as they continue learning the language.
Additional research will investigate whether the findings apply to those learning other languages, not just Mandarin. The eventual goal is to explore whether someone can practice sound recognition early in the process of learning a new language to potentially improve their success.
"We found that the more active the right hemisphere is, the more sensitive the listener is to acoustic differences in sound," Qi said. "Everyone has different levels of activation, but even if you don't have that sensitivity to begin with, you can still learn successfully if your brain is plastic enough."
Researchers can't say for certain how to apply these findings to real-life learning, but when it comes down to it, "Adults are trainable," Qi said. "They can train themselves to become more sensitive to foreign speech sounds."
( S o u r c e : U n i v e r s i t y o f D e l a w a r e . " L e a r n i n g l a n g u a g e : N e w i n s i g h t s i n t o h o w b r a i n f u n c t i o n s . " S c i e n c e D a i l y .<www.sciencedaily.com/releases/2019/05/190508093716.htm> ScienceDaily, 8 May 2019).
TEXT I
LEARNING LANGUAGE: NEWINSIGHTS INTO HOWBRAIN FUNCTIONS
For most native English-speakers, learning the Mandarin Chinese language from scratch is no easy task.
Learning it in a class that essentially compresses a one-semester college course into a single month of intensive instruction -- and agreeing to have your brain scanned before and after -- might seem even more daunting.
But the 24 Americans who did just that have enabled University of Delaware cognitive neuroscientist Zhenghan Qi and her colleagues to make new discoveries about how adults learn a foreign language.
The study, published in May in the journal NeuroImage, focused on the roles of the brain's left and right hemispheres in language acquisition. The findings could lead to instructional methods that potentially improve students' success in learning a new language.
"The left hemisphere is known as the language-learning part of the brain, but we found that it was the right hemisphere that determined the eventual success" in learning Mandarin, said Qi, assistant professor of linguistics and cognitive science.
"This was new," she said. "For decades, everyone has focused on the left hemisphere, and the right hemisphere has been largely
overlooked."
The left hemisphere is undoubtedly important in language learning, Qi said, noting that clinical research on individuals with speech disorders has indicated that the left side of the brain is in many ways the hub of language processing.
But, she said, before any individuals -- infants learning their native language or adults learning a second language -- begin
processing such aspects of the new language as vocabulary and grammar, they must first learn to identify its basic sounds or
phonological elements.
It's during that process of distinguishing "acoustic details" of sounds where the right side of the brain is key, according to the new findings.
Researchers began by exposing the 24 participants in the study to pairs of sounds that were similar but began with different consonants, such as "bah" and "nah," and having them describe the tones, Qi said.
"We asked: Were the tones of those two sounds similar or different?" she said. "We used the brain activation patterns during this task to predict who would be the most successful learners" of the new language.
The study continued by teaching the participants in a setting designed to replicate a college language class, although the usual semester was condensed into four weeks of instruction. Students attended class for three and a half hours a day, five days a week, completed homework assignments and took tests.
"Our research is the first to look at attainment and long-term retention of real-world language learned in a classroom setting, which is how most people learn a new language," Qi said.
By scanning each participant's brain with functional MRI (magnetic resonance imaging) at the beginning and end of the project, the scientists were able to see which part of the brain was most engaged while processing basic sound elements in Mandarin. To their surprise, they found that -- although, as expected, the left hemisphere showed a substantial increase of activation later in the learning process -- the right hemisphere in the most successful learners was most active in the early, sound-recognition stage.
"It turns out that the right hemisphere is very important in processing foreign speech sounds at the beginning of learning," Qi said. She added that the right hemisphere's role then seems to diminish in those successful learners as they continue learning the language.
Additional research will investigate whether the findings apply to those learning other languages, not just Mandarin. The eventual goal is to explore whether someone can practice sound recognition early in the process of learning a new language to potentially improve their success.
"We found that the more active the right hemisphere is, the more sensitive the listener is to acoustic differences in sound," Qi said. "Everyone has different levels of activation, but even if you don't have that sensitivity to begin with, you can still learn successfully if your brain is plastic enough."
Researchers can't say for certain how to apply these findings to real-life learning, but when it comes down to it, "Adults are trainable," Qi said. "They can train themselves to become more sensitive to foreign speech sounds."
( S o u r c e : U n i v e r s i t y o f D e l a w a r e . " L e a r n i n g l a n g u a g e : N e w i n s i g h t s i n t o h o w b r a i n f u n c t i o n s . " S c i e n c e D a i l y .<www.sciencedaily.com/releases/2019/05/190508093716.htm> ScienceDaily, 8 May 2019).
TEXT I
LEARNING LANGUAGE: NEWINSIGHTS INTO HOWBRAIN FUNCTIONS
For most native English-speakers, learning the Mandarin Chinese language from scratch is no easy task.
Learning it in a class that essentially compresses a one-semester college course into a single month of intensive instruction -- and agreeing to have your brain scanned before and after -- might seem even more daunting.
But the 24 Americans who did just that have enabled University of Delaware cognitive neuroscientist Zhenghan Qi and her colleagues to make new discoveries about how adults learn a foreign language.
The study, published in May in the journal NeuroImage, focused on the roles of the brain's left and right hemispheres in language acquisition. The findings could lead to instructional methods that potentially improve students' success in learning a new language.
"The left hemisphere is known as the language-learning part of the brain, but we found that it was the right hemisphere that determined the eventual success" in learning Mandarin, said Qi, assistant professor of linguistics and cognitive science.
"This was new," she said. "For decades, everyone has focused on the left hemisphere, and the right hemisphere has been largely
overlooked."
The left hemisphere is undoubtedly important in language learning, Qi said, noting that clinical research on individuals with speech disorders has indicated that the left side of the brain is in many ways the hub of language processing.
But, she said, before any individuals -- infants learning their native language or adults learning a second language -- begin
processing such aspects of the new language as vocabulary and grammar, they must first learn to identify its basic sounds or
phonological elements.
It's during that process of distinguishing "acoustic details" of sounds where the right side of the brain is key, according to the new findings.
Researchers began by exposing the 24 participants in the study to pairs of sounds that were similar but began with different consonants, such as "bah" and "nah," and having them describe the tones, Qi said.
"We asked: Were the tones of those two sounds similar or different?" she said. "We used the brain activation patterns during this task to predict who would be the most successful learners" of the new language.
The study continued by teaching the participants in a setting designed to replicate a college language class, although the usual semester was condensed into four weeks of instruction. Students attended class for three and a half hours a day, five days a week, completed homework assignments and took tests.
"Our research is the first to look at attainment and long-term retention of real-world language learned in a classroom setting, which is how most people learn a new language," Qi said.
By scanning each participant's brain with functional MRI (magnetic resonance imaging) at the beginning and end of the project, the scientists were able to see which part of the brain was most engaged while processing basic sound elements in Mandarin. To their surprise, they found that -- although, as expected, the left hemisphere showed a substantial increase of activation later in the learning process -- the right hemisphere in the most successful learners was most active in the early, sound-recognition stage.
"It turns out that the right hemisphere is very important in processing foreign speech sounds at the beginning of learning," Qi said. She added that the right hemisphere's role then seems to diminish in those successful learners as they continue learning the language.
Additional research will investigate whether the findings apply to those learning other languages, not just Mandarin. The eventual goal is to explore whether someone can practice sound recognition early in the process of learning a new language to potentially improve their success.
"We found that the more active the right hemisphere is, the more sensitive the listener is to acoustic differences in sound," Qi said. "Everyone has different levels of activation, but even if you don't have that sensitivity to begin with, you can still learn successfully if your brain is plastic enough."
Researchers can't say for certain how to apply these findings to real-life learning, but when it comes down to it, "Adults are trainable," Qi said. "They can train themselves to become more sensitive to foreign speech sounds."
( S o u r c e : U n i v e r s i t y o f D e l a w a r e . " L e a r n i n g l a n g u a g e : N e w i n s i g h t s i n t o h o w b r a i n f u n c t i o n s . " S c i e n c e D a i l y .<www.sciencedaily.com/releases/2019/05/190508093716.htm> ScienceDaily, 8 May 2019).
Source: www.economist.com Jul 2nd 2009 (Adapted)
The mantra in Washington, DC is simple: spend billions now, pay later. Congress has been crafting ambitious plans for energy, health care and transport. But the mood in state capitals has been different. Forty-six states had a deadline of June 0th to pass their budgets. Just as important, those budgets had to be balanced. With the sole exemption of Vermont, America ́s state governments, unlike the federal one, are not allowed to run deficits. June was an agonizing month.
On the morning of July 1st, the first day of the new fiscal year for most states, taxpayers had reason to be glum. Connecticut, North Carolina and Ohio had passed temporary extensions. California, Arizona, Pennsylvania and Illinois did not have a balanced budget as required. Most states that did pass budgets imposed painful cuts, higher taxes and fees on everything from pesticides in Minnesota to hunting licences in Maine.
Matters would be worse if it were not for Washington ́s stimulus package, which provides more than $135 billion to support state budgets. Most money, $87 billion, is for Medicaid, the government ́s health-care programme for the poor. A further $48 billion created a State Fiscal Stabilisation Fund, mostly for schools and universities.
According to paragraph 3,
Outcry as Chinese school makes iPads compulsory
Apple products are incredibly popular in China, but not everyone can afford them
A school in northern China has been criticised for enforcing iPad learning as part of its new curriculum, it's reported.
According to China Economic Daily, the Danfeng High School in Shaanxi province recently issued a notice saying that, “as part of a teaching requirement, students are required to bring their own iPad” when they start the new school year in September.
Staff told the paper that using an iPad would “improve classroom efficiency”, and that the school would managean internet firewall, so that parents would not have to worry about students using the device for other means.
However, China Economic Daily says that after criticism from parents, who felt that it would be an “unnecessary financial burden”, eadmaster Yao Hushan said that having an iPad was no longer a mandatory requirement. Mr Yao added that children who don't have a device could still enrol, but that he recommended students bring an iPad as part of a “process of promoting the digital classroom”.
The incident led to lively discussion on the Sina Weibo social media platform. “Those parents that can't afford one will have to sell a kidney!” one user quipped.
Others expressed concerns about the health implications of long-term electronic device use. “I worry about their vision,” one user said, and another said they would all become “short-sighted and have to wear glasses.”
But others felt that it was a good move in line with new modern ways of teaching. “They are affordable for the average family, one said, “they don't necessarily need to buy the latest model.”
Reporting by Kerry Allen
Taken from: www.bbc.com/news/blogs-news-from-elsewhere
The word STAFF in “Staff told the paper that using an iPAD would improve classroom efficiency” refers in this context to:
There’s a life-size statue of a little girl that has taken a permanent seat on a bench in the San Telmo neighborhood of Buenos Aires. She’s a cute little thing, wearing a green dress with a matching hair bow, and is a popular centerpiece in many photos.
This statue was installed in 2009 as a tribute to Mafalda, Argentina’s favorite comic strip character and cultural icon. Cartoonist Joaquín Salvador Lavado, popularly known by his pen name Ouinto, created Mafalda for a comic strip that ran from 1964 until 1974.
Ortiz cleverly used Mafalda’s childhood innocence and humor to question political and social ideas that allude to Argentine reality. Mafalda cared about world peace and humanity and, in her own way, struggled with the problems she observed in her life.
For ten years Mafalda appeared in newspapers and people fell in love with this compassionate six-year old girl who had a special awareness of the world she lived in.
Among many quirky characteristics, she’s remembered as the little girl that hates soup and worships The Beatles. (Fonte:<https://www.peruforless.com/blog/cultural-vibes-mafalda-thecomic- strip-character-from-argentina/>. Acesso em: 02/07/2016)
O título do texto significa?
Based on text, it can be concluded that
preventive diplomacy usually deals with armed conflicts.