Questões de Concurso Público TBG 2023 para Analista Júnior – Ênfase: Contábil

Foram encontradas 100 questões

Q2281240 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


Oppenheimer’s paper on black holes received little attention at the time it was published.

Alternativas
Q2281241 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


According to Cathryn Carson, Oppenheimer’s work on neutron stars and black holes was meaningless at the time it was developed.

Alternativas
Q2281242 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


With the help of his students, Oppenheimer could easily shift from one research topic to another.

Alternativas
Q2281243 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


The word “war” (first sentence of the second paragraph) refers to any war.

Alternativas
Q2281244 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


Hartland Snyder helped Oppenheimer write his least relevant paper in physics.

Alternativas
Q2281245 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)
Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.
The pronoun “they” (last sentence of the last paragraph) refers to the word “assumptions”.
Alternativas
Q2281246 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “overshadowed” (first sentence of the second paragraph) means, in the context of text CB1A2-I, “made less noticeable”. 

Alternativas
Q2281247 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “installment” (first sentence of the first paragraph) means, in the context of text CB1A2-I, “to make it ready to use”.

Alternativas
Q2281248 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “physicists” means “medical doctors”. 

Alternativas
Q2281249 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


Graduate students are people studying for a master’s degree or doctorate.

Alternativas
Q2281320 Contabilidade Geral

Com base na estrutura conceitual para a elaboração de demonstrações contábeis, julgue o item a seguir.


A capacidade de gerar benefícios econômicos é uma condição necessária para que um recurso seja considerado um ativo pela contabilidade.  

Alternativas
Q2281321 Contabilidade Geral

Com base na estrutura conceitual para a elaboração de demonstrações contábeis, julgue o item a seguir.


O valor em uso é uma base de mensuração contábil que representa uma estimativa do valor presente dos fluxos de caixa futuros decorrentes da utilização de um ativo, sem considerar, no seu cálculo, os fluxos de caixa que uma eventual alienação desse ativo, ao final de sua vida útil, possa proporcionar.

Alternativas
Q2281322 Contabilidade Geral

Com base na estrutura conceitual para a elaboração de demonstrações contábeis, julgue o item a seguir.


A prudência diz respeito à cautela que o contador deve ter caso lhe seja demandado realizar julgamentos em condições de incerteza e contribui para evitar a superavaliação e a subavaliação de ativos, passivos, receitas e despesas.

Alternativas
Q2281323 Contabilidade Geral

Julgue o item subsequente, relativo à apresentação das demonstrações contábeis de companhias abertas.


Fundamentada em conceitos macroeconômicos, a demonstração do valor adicionado (DVA) se propõe a mensurar a contribuição da entidade para a formação do produto interno bruto (PIB), provendo informações sobre a geração e a distribuição de riqueza com base no regime contábil da competência. 

Alternativas
Q2281324 Contabilidade Geral

Julgue o item subsequente, relativo à apresentação das demonstrações contábeis de companhias abertas.


O empréstimo obtido com liquidação prevista para o período de até doze meses após a data do balanço deve ser classificado no passivo circulante, mesmo que o prazo original para a liquidação da operação tenha sido estabelecido para um período superior a doze meses após a data do balanço. 

Alternativas
Q2281325 Contabilidade Geral

Julgue o item subsequente, relativo à apresentação das demonstrações contábeis de companhias abertas.


Na demonstração do resultado abrangente, os ajustes de avaliação patrimonial devem ser contemplados no valor do resultado líquido do período.

Alternativas
Q2281326 Contabilidade Geral

À luz dos pronunciamentos técnicos do Comitê de Pronunciamentos Contábeis (CPC), julgue o item que se segue.


Os gastos efetuados com testes destinados a verificar se uma máquina industrial recém-adquirida funciona adequadamente, estando apta a ser inserida no processo de produção, não devem compor o custo dessa máquina industrial.

Alternativas
Q2281327 Contabilidade Geral

À luz dos pronunciamentos técnicos do Comitê de Pronunciamentos Contábeis (CPC), julgue o item que se segue.


A vida útil e o valor residual utilizados no cálculo da depreciação de ativos imobilizados devem ter os seus valores revisados pelo menos ao final de cada exercício.

Alternativas
Q2281328 Contabilidade Geral

À luz dos pronunciamentos técnicos do Comitê de Pronunciamentos Contábeis (CPC), julgue o item que se segue.


A obrigação presente, resultante de eventos passados, que não satisfaz os critérios exigidos para o seu reconhecimento contábil não está contemplada no conceito de passivo contingente. 

Alternativas
Q2281329 Contabilidade Geral

À luz dos pronunciamentos técnicos do Comitê de Pronunciamentos Contábeis (CPC), julgue o item que se segue.


O intangível que resulte da fase de pesquisa de projeto interno deve ser reconhecido como ativo no momento em que os gastos com a pesquisa forem efetuados pela entidade.

Alternativas
Respostas
21: C
22: E
23: C
24: E
25: E
26: E
27: C
28: E
29: E
30: C
31: C
32: E
33: C
34: C
35: C
36: E
37: E
38: C
39: E
40: E