Questões de Concurso Público TBG 2023 para Engenheiro Júnior – Ênfase: Projetos e Obras, Elétrica

Foram encontradas 100 questões

Q2281240 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


Oppenheimer’s paper on black holes received little attention at the time it was published.

Alternativas
Q2281241 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


According to Cathryn Carson, Oppenheimer’s work on neutron stars and black holes was meaningless at the time it was developed.

Alternativas
Q2281242 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


With the help of his students, Oppenheimer could easily shift from one research topic to another.

Alternativas
Q2281243 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


The word “war” (first sentence of the second paragraph) refers to any war.

Alternativas
Q2281244 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on text CB1A2-I, judge the following item.


Hartland Snyder helped Oppenheimer write his least relevant paper in physics.

Alternativas
Q2281245 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)
Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.
The pronoun “they” (last sentence of the last paragraph) refers to the word “assumptions”.
Alternativas
Q2281246 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “overshadowed” (first sentence of the second paragraph) means, in the context of text CB1A2-I, “made less noticeable”. 

Alternativas
Q2281247 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “installment” (first sentence of the first paragraph) means, in the context of text CB1A2-I, “to make it ready to use”.

Alternativas
Q2281248 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “physicists” means “medical doctors”. 

Alternativas
Q2281249 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


Graduate students are people studying for a master’s degree or doctorate.

Alternativas
Q2283145 Engenharia Elétrica

A respeito da teoria eletromagnética, julgue o item a seguir.

O campo magnético produzido pela corrente elétrica que circula em uma bobina de cobre depende do número de espiras da bobina e da magnitude da corrente. 

Alternativas
Q2283146 Engenharia Elétrica

A respeito da teoria eletromagnética, julgue o item a seguir.


A lei de Lenz é uma generalização da lei de Ampère, associando a geração de campo magnético à circulação de corrente elétrica.

Alternativas
Q2283147 Engenharia Elétrica

A respeito da teoria eletromagnética, julgue o item a seguir.


A lei de Faraday descreve o fenômeno da indução eletromagnética, concluindo que a força eletromotriz induzida em um condutor elétrico pela variação de fluxo magnético que o concatena terá sentido que se oponha à variação desse fluxo.

Alternativas
Q2283148 Engenharia Elétrica

Considerando um transformador de potência trifásico de 138 kV/13,8 kV, em frequência de 60 Hz, com conexão em Y no lado de alta tensão e que opera como abaixador de tensão e com carga nominal, julgue o seguinte item.


A corrente nominal de linha do lado de alta tensão é igual a 10% da corrente nominal de linha do lado de baixa tensão.

Alternativas
Q2283149 Engenharia Elétrica

Considerando um transformador de potência trifásico de 138 kV/13,8 kV, em frequência de 60 Hz, com conexão em Y no lado de alta tensão e que opera como abaixador de tensão e com carga nominal, julgue o seguinte item.


A corrente nominal de fase no lado de alta tensão é igual a 10% da corrente nominal de fase do lado de baixa tensão. 

Alternativas
Q2283150 Engenharia Elétrica

Considerando um transformador de potência trifásico de 138 kV/13,8 kV, em frequência de 60 Hz, com conexão em Y no lado de alta tensão e que opera como abaixador de tensão e com carga nominal, julgue o seguinte item.


Se a corrente de linha do lado de baixa tensão for igual a (1.156/138) A, a potência aparente nominal do transformador será de aproximadamente 200 kVA. 

Alternativas
Q2283151 Engenharia Elétrica

Considerando um transformador de potência trifásico de 138 kV/13,8 kV, em frequência de 60 Hz, com conexão em Y no lado de alta tensão e que opera como abaixador de tensão e com carga nominal, julgue o seguinte item.


Nesse tipo de transformador, existem perdas por efeito Joule.  

Alternativas
Q2283152 Engenharia Elétrica

Considerando um transformador de potência trifásico de 138 kV/13,8 kV, em frequência de 60 Hz, com conexão em Y no lado de alta tensão e que opera como abaixador de tensão e com carga nominal, julgue o seguinte item.


Se o secundário tiver conexão em triângulo em vez de conexão em Y, as tensões de 180 Hz aplicadas à carga serão maiores. 

Alternativas
Q2283153 Engenharia Elétrica

Julgue o próximo item, acerca de máquinas síncronas.


Em um alternador, o enrolamento do rotor é denominado enrolamento de armadura.

Alternativas
Q2283154 Engenharia Elétrica

Julgue o próximo item, acerca de máquinas síncronas.


A velocidade de rotação do eixo de um motor síncrono trifásico depende diretamente da velocidade de rotação do campo magnético girante do estator.

Alternativas
Respostas
21: C
22: E
23: C
24: E
25: E
26: E
27: C
28: E
29: E
30: C
31: E
32: C
33: E
34: C
35: E
36: C
37: C
38: E
39: E
40: C