Questões de Concurso Público CNEN 2014 para Técnico em Química
Foram encontradas 100 questões
Energia nuclear: ontem e hoje
Guerra e paz
O sucesso do primeiro reator nuclear pode ser comparável em importância à descoberta do fogo, à invenção da máquina a vapor, do automóvel ou avião ou, mais modernamente, à difusão da internet pelo mundo - afinal, tornou possível usar a enorme quantidade de energia armazenada no núcleo atômico.
As circunstâncias daquele momento fizeram com que essa energia fosse primeiramente empregada na guerra, com a produção de três bombas atômicas - duas lançadas sobre o Japão, em agosto de 1945, pondo fim ao conflito. Mas, terminada a “guerra quente" - e iniciada a Guerra Fria -, os reatores nucleares, já a partir de 1950, passaram a ser construídos com propósitos pacíficos.
Mais potentes e tecnologicamente avançadas, essas máquinas começaram a produzir diversos elementos radioativos (molibdênio e iodo, por exemplo) que eram incorporados em quantidades adequadas a produtos farmacêuticos (radiofármacos), que passaram a ser usados na medicina nuclear para diagnóstico e tratamento de doenças.
Na década de 1950, surgiram vários reatores para gerar eletricidade, trazendo bem-estar e conforto às populações. O pioneiro foi Obminsk (Rússia), em 1954, e, dois anos depois, Calder Hall (Reino Unido), primeira usina nuclear de larga escala, que funcionou por 50 anos.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
Energia nuclear: ontem e hoje
Guerra e paz
O sucesso do primeiro reator nuclear pode ser comparável em importância à descoberta do fogo, à invenção da máquina a vapor, do automóvel ou avião ou, mais modernamente, à difusão da internet pelo mundo - afinal, tornou possível usar a enorme quantidade de energia armazenada no núcleo atômico.
As circunstâncias daquele momento fizeram com que essa energia fosse primeiramente empregada na guerra, com a produção de três bombas atômicas - duas lançadas sobre o Japão, em agosto de 1945, pondo fim ao conflito. Mas, terminada a “guerra quente" - e iniciada a Guerra Fria -, os reatores nucleares, já a partir de 1950, passaram a ser construídos com propósitos pacíficos.
Mais potentes e tecnologicamente avançadas, essas máquinas começaram a produzir diversos elementos radioativos (molibdênio e iodo, por exemplo) que eram incorporados em quantidades adequadas a produtos farmacêuticos (radiofármacos), que passaram a ser usados na medicina nuclear para diagnóstico e tratamento de doenças.
Na década de 1950, surgiram vários reatores para gerar eletricidade, trazendo bem-estar e conforto às populações. O pioneiro foi Obminsk (Rússia), em 1954, e, dois anos depois, Calder Hall (Reino Unido), primeira usina nuclear de larga escala, que funcionou por 50 anos.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
Energia nuclear: ontem e hoje
Guerra e paz
O sucesso do primeiro reator nuclear pode ser comparável em importância à descoberta do fogo, à invenção da máquina a vapor, do automóvel ou avião ou, mais modernamente, à difusão da internet pelo mundo - afinal, tornou possível usar a enorme quantidade de energia armazenada no núcleo atômico.
As circunstâncias daquele momento fizeram com que essa energia fosse primeiramente empregada na guerra, com a produção de três bombas atômicas - duas lançadas sobre o Japão, em agosto de 1945, pondo fim ao conflito. Mas, terminada a “guerra quente" - e iniciada a Guerra Fria -, os reatores nucleares, já a partir de 1950, passaram a ser construídos com propósitos pacíficos.
Mais potentes e tecnologicamente avançadas, essas máquinas começaram a produzir diversos elementos radioativos (molibdênio e iodo, por exemplo) que eram incorporados em quantidades adequadas a produtos farmacêuticos (radiofármacos), que passaram a ser usados na medicina nuclear para diagnóstico e tratamento de doenças.
Na década de 1950, surgiram vários reatores para gerar eletricidade, trazendo bem-estar e conforto às populações. O pioneiro foi Obminsk (Rússia), em 1954, e, dois anos depois, Calder Hall (Reino Unido), primeira usina nuclear de larga escala, que funcionou por 50 anos.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
Energia nuclear: ontem e hoje
Guerra e paz
O sucesso do primeiro reator nuclear pode ser comparável em importância à descoberta do fogo, à invenção da máquina a vapor, do automóvel ou avião ou, mais modernamente, à difusão da internet pelo mundo - afinal, tornou possível usar a enorme quantidade de energia armazenada no núcleo atômico.
As circunstâncias daquele momento fizeram com que essa energia fosse primeiramente empregada na guerra, com a produção de três bombas atômicas - duas lançadas sobre o Japão, em agosto de 1945, pondo fim ao conflito. Mas, terminada a “guerra quente" - e iniciada a Guerra Fria -, os reatores nucleares, já a partir de 1950, passaram a ser construídos com propósitos pacíficos.
Mais potentes e tecnologicamente avançadas, essas máquinas começaram a produzir diversos elementos radioativos (molibdênio e iodo, por exemplo) que eram incorporados em quantidades adequadas a produtos farmacêuticos (radiofármacos), que passaram a ser usados na medicina nuclear para diagnóstico e tratamento de doenças.
Na década de 1950, surgiram vários reatores para gerar eletricidade, trazendo bem-estar e conforto às populações. O pioneiro foi Obminsk (Rússia), em 1954, e, dois anos depois, Calder Hall (Reino Unido), primeira usina nuclear de larga escala, que funcionou por 50 anos.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
I. O sucesso do primeiro reator nuclear é tão ou mais importante que a descoberta do fogo e a difusão da internet pelo mundo.
II. A energia nuclear teve, a princípio, como principal objetivo, a construção de bombas atômicas utilizadas em guerras.
III. Os terceiro e quarto parágrafos apontam efeitos benéficos obtidos a partir da produção dos reatores nucleares.
Está(ão) correta(s) apenas a(s) afirmativa(s)
Energia nuclear: ontem e hoje
Guerra e paz
O sucesso do primeiro reator nuclear pode ser comparável em importância à descoberta do fogo, à invenção da máquina a vapor, do automóvel ou avião ou, mais modernamente, à difusão da internet pelo mundo - afinal, tornou possível usar a enorme quantidade de energia armazenada no núcleo atômico.
As circunstâncias daquele momento fizeram com que essa energia fosse primeiramente empregada na guerra, com a produção de três bombas atômicas - duas lançadas sobre o Japão, em agosto de 1945, pondo fim ao conflito. Mas, terminada a “guerra quente" - e iniciada a Guerra Fria -, os reatores nucleares, já a partir de 1950, passaram a ser construídos com propósitos pacíficos.
Mais potentes e tecnologicamente avançadas, essas máquinas começaram a produzir diversos elementos radioativos (molibdênio e iodo, por exemplo) que eram incorporados em quantidades adequadas a produtos farmacêuticos (radiofármacos), que passaram a ser usados na medicina nuclear para diagnóstico e tratamento de doenças.
Na década de 1950, surgiram vários reatores para gerar eletricidade, trazendo bem-estar e conforto às populações. O pioneiro foi Obminsk (Rússia), em 1954, e, dois anos depois, Calder Hall (Reino Unido), primeira usina nuclear de larga escala, que funcionou por 50 anos.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
A reação brasileira
Ainda em 1954, foi lançado ao mar o primeiro submarino com propulsão nuclear, o Nautilus, dos EUA. Pouco depois, vieram navios como o Savannah (EUA, 1962) e o Otto Hahn (Alemanha, 1964) - este último era capaz de navegar impressionantes 40 mil km com apenas 2 kg de urânio-235.
O Brasil reagiu a esses fatos. Aqui, foram criados, a partir de 1949, institutos e centros de pesquisa voltados fundamentalmente para as questões nucleares. Nessas instituições, tiveram lugar a construção e operação dos primeiros reatores nucleares do país, voltados tanto para a produção de radiofármacos quanto para a pesquisa e formação de pessoal especializado.
Em 1957, o primeiro reator nuclear da América Latina, o IEA-R1, entrou em operação no então Instituto de Energia Atômica (IEA) - atualmente, Instituto de Pesquisas Energéticas e Nucleares (Ipen) na Universidade de São Paulo.
Em 1960, começou a funcionar o reator Triga Mark-1, no então Instituto de Pesquisas Radioativas (IPR) - hoje, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) -, na Universidade Federal de Minas Gerais. Cinco anos depois, foi a vez, no campus da Universidade Federal do Rio de Janeiro, do primeiro reator de pesquisa totalmente construído por empresa brasileira, o Argonauta, no Instituto de Engenharia Nuclear (IEN).
Em 1988, o Brasil inaugurou seu primeiro reator nuclear genuinamente nacional, o Ipen/MB-01, resultado de parceria entre pesquisadores do Ipen e da Marinha do Brasil. O objetivo primordial daquela máquina, além da pesquisa, é formar recursos humanos.
Atualmente, o Brasil conta com duas unidades nucleares de grande porte para geração de eletricidade: Angra I, em funcionamento há 30 anos, e Angra II, a partir de 2000. Também localizado em Angra dos Reis (RJ), o reator Angra III, em construção, está previsto para entrar em funcionamento em 2016.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
A reação brasileira
Ainda em 1954, foi lançado ao mar o primeiro submarino com propulsão nuclear, o Nautilus, dos EUA. Pouco depois, vieram navios como o Savannah (EUA, 1962) e o Otto Hahn (Alemanha, 1964) - este último era capaz de navegar impressionantes 40 mil km com apenas 2 kg de urânio-235.
O Brasil reagiu a esses fatos. Aqui, foram criados, a partir de 1949, institutos e centros de pesquisa voltados fundamentalmente para as questões nucleares. Nessas instituições, tiveram lugar a construção e operação dos primeiros reatores nucleares do país, voltados tanto para a produção de radiofármacos quanto para a pesquisa e formação de pessoal especializado.
Em 1957, o primeiro reator nuclear da América Latina, o IEA-R1, entrou em operação no então Instituto de Energia Atômica (IEA) - atualmente, Instituto de Pesquisas Energéticas e Nucleares (Ipen) na Universidade de São Paulo.
Em 1960, começou a funcionar o reator Triga Mark-1, no então Instituto de Pesquisas Radioativas (IPR) - hoje, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) -, na Universidade Federal de Minas Gerais. Cinco anos depois, foi a vez, no campus da Universidade Federal do Rio de Janeiro, do primeiro reator de pesquisa totalmente construído por empresa brasileira, o Argonauta, no Instituto de Engenharia Nuclear (IEN).
Em 1988, o Brasil inaugurou seu primeiro reator nuclear genuinamente nacional, o Ipen/MB-01, resultado de parceria entre pesquisadores do Ipen e da Marinha do Brasil. O objetivo primordial daquela máquina, além da pesquisa, é formar recursos humanos.
Atualmente, o Brasil conta com duas unidades nucleares de grande porte para geração de eletricidade: Angra I, em funcionamento há 30 anos, e Angra II, a partir de 2000. Também localizado em Angra dos Reis (RJ), o reator Angra III, em construção, está previsto para entrar em funcionamento em 2016.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
A reação brasileira
Ainda em 1954, foi lançado ao mar o primeiro submarino com propulsão nuclear, o Nautilus, dos EUA. Pouco depois, vieram navios como o Savannah (EUA, 1962) e o Otto Hahn (Alemanha, 1964) - este último era capaz de navegar impressionantes 40 mil km com apenas 2 kg de urânio-235.
O Brasil reagiu a esses fatos. Aqui, foram criados, a partir de 1949, institutos e centros de pesquisa voltados fundamentalmente para as questões nucleares. Nessas instituições, tiveram lugar a construção e operação dos primeiros reatores nucleares do país, voltados tanto para a produção de radiofármacos quanto para a pesquisa e formação de pessoal especializado.
Em 1957, o primeiro reator nuclear da América Latina, o IEA-R1, entrou em operação no então Instituto de Energia Atômica (IEA) - atualmente, Instituto de Pesquisas Energéticas e Nucleares (Ipen) na Universidade de São Paulo.
Em 1960, começou a funcionar o reator Triga Mark-1, no então Instituto de Pesquisas Radioativas (IPR) - hoje, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) -, na Universidade Federal de Minas Gerais. Cinco anos depois, foi a vez, no campus da Universidade Federal do Rio de Janeiro, do primeiro reator de pesquisa totalmente construído por empresa brasileira, o Argonauta, no Instituto de Engenharia Nuclear (IEN).
Em 1988, o Brasil inaugurou seu primeiro reator nuclear genuinamente nacional, o Ipen/MB-01, resultado de parceria entre pesquisadores do Ipen e da Marinha do Brasil. O objetivo primordial daquela máquina, além da pesquisa, é formar recursos humanos.
Atualmente, o Brasil conta com duas unidades nucleares de grande porte para geração de eletricidade: Angra I, em funcionamento há 30 anos, e Angra II, a partir de 2000. Também localizado em Angra dos Reis (RJ), o reator Angra III, em construção, está previsto para entrar em funcionamento em 2016.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
A reação brasileira
Ainda em 1954, foi lançado ao mar o primeiro submarino com propulsão nuclear, o Nautilus, dos EUA. Pouco depois, vieram navios como o Savannah (EUA, 1962) e o Otto Hahn (Alemanha, 1964) - este último era capaz de navegar impressionantes 40 mil km com apenas 2 kg de urânio-235.
O Brasil reagiu a esses fatos. Aqui, foram criados, a partir de 1949, institutos e centros de pesquisa voltados fundamentalmente para as questões nucleares. Nessas instituições, tiveram lugar a construção e operação dos primeiros reatores nucleares do país, voltados tanto para a produção de radiofármacos quanto para a pesquisa e formação de pessoal especializado.
Em 1957, o primeiro reator nuclear da América Latina, o IEA-R1, entrou em operação no então Instituto de Energia Atômica (IEA) - atualmente, Instituto de Pesquisas Energéticas e Nucleares (Ipen) na Universidade de São Paulo.
Em 1960, começou a funcionar o reator Triga Mark-1, no então Instituto de Pesquisas Radioativas (IPR) - hoje, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) -, na Universidade Federal de Minas Gerais. Cinco anos depois, foi a vez, no campus da Universidade Federal do Rio de Janeiro, do primeiro reator de pesquisa totalmente construído por empresa brasileira, o Argonauta, no Instituto de Engenharia Nuclear (IEN).
Em 1988, o Brasil inaugurou seu primeiro reator nuclear genuinamente nacional, o Ipen/MB-01, resultado de parceria entre pesquisadores do Ipen e da Marinha do Brasil. O objetivo primordial daquela máquina, além da pesquisa, é formar recursos humanos.
Atualmente, o Brasil conta com duas unidades nucleares de grande porte para geração de eletricidade: Angra I, em funcionamento há 30 anos, e Angra II, a partir de 2000. Também localizado em Angra dos Reis (RJ), o reator Angra III, em construção, está previsto para entrar em funcionamento em 2016.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
A reação brasileira
Ainda em 1954, foi lançado ao mar o primeiro submarino com propulsão nuclear, o Nautilus, dos EUA. Pouco depois, vieram navios como o Savannah (EUA, 1962) e o Otto Hahn (Alemanha, 1964) - este último era capaz de navegar impressionantes 40 mil km com apenas 2 kg de urânio-235.
O Brasil reagiu a esses fatos. Aqui, foram criados, a partir de 1949, institutos e centros de pesquisa voltados fundamentalmente para as questões nucleares. Nessas instituições, tiveram lugar a construção e operação dos primeiros reatores nucleares do país, voltados tanto para a produção de radiofármacos quanto para a pesquisa e formação de pessoal especializado.
Em 1957, o primeiro reator nuclear da América Latina, o IEA-R1, entrou em operação no então Instituto de Energia Atômica (IEA) - atualmente, Instituto de Pesquisas Energéticas e Nucleares (Ipen) na Universidade de São Paulo.
Em 1960, começou a funcionar o reator Triga Mark-1, no então Instituto de Pesquisas Radioativas (IPR) - hoje, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) -, na Universidade Federal de Minas Gerais. Cinco anos depois, foi a vez, no campus da Universidade Federal do Rio de Janeiro, do primeiro reator de pesquisa totalmente construído por empresa brasileira, o Argonauta, no Instituto de Engenharia Nuclear (IEN).
Em 1988, o Brasil inaugurou seu primeiro reator nuclear genuinamente nacional, o Ipen/MB-01, resultado de parceria entre pesquisadores do Ipen e da Marinha do Brasil. O objetivo primordial daquela máquina, além da pesquisa, é formar recursos humanos.
Atualmente, o Brasil conta com duas unidades nucleares de grande porte para geração de eletricidade: Angra I, em funcionamento há 30 anos, e Angra II, a partir de 2000. Também localizado em Angra dos Reis (RJ), o reator Angra III, em construção, está previsto para entrar em funcionamento em 2016.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET-CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em:http://redeglobo.globo.com/globociencia/noticia/2013/06/para-
especialistas-medicina-nuclear-ditara-futuro-dos-exames- de-imagem.html.)
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET-CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em:http://redeglobo.globo.com/globociencia/noticia/2013/06/para-
especialistas-medicina-nuclear-ditara-futuro-dos-exames- de-imagem.html.)
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET-CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em:http://redeglobo.globo.com/globociencia/noticia/2013/06/para-
especialistas-medicina-nuclear-ditara-futuro-dos-exames- de-imagem.html.)
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET-CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em:http://redeglobo.globo.com/globociencia/noticia/2013/06/para-
especialistas-medicina-nuclear-ditara-futuro-dos-exames- de-imagem.html.)
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET-CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em:http://redeglobo.globo.com/globociencia/noticia/2013/06/para-
especialistas-medicina-nuclear-ditara-futuro-dos-exames- de-imagem.html.)
Energia nuclear: ontem e hoje
Guerra e paz
O sucesso do primeiro reator nuclear pode ser comparável em importância à descoberta do fogo, à invenção da máquina a vapor, do automóvel ou avião ou, mais modernamente, à difusão da internet pelo mundo – afinal, tornou possível usar a enorme quantidade de energia armazenada no núcleo atômico.
As circunstâncias daquele momento fizeram com que essa energia fosse primeiramente empregada na guerra, com a produção de três bombas atômicas – duas lançadas sobre o Japão, em agosto de 1945, pondo fim ao conflito. Mas, terminada a “guerra quente" – e iniciada a Guerra Fria –, os reatores nucleares, já a partir de 1950, passaram a ser construídos com propósitos pacíficos.
Mais potentes e tecnologicamente avançadas, essas máquinas começaram a produzir diversos elementos radioativos (molibdênio e iodo, por exemplo) que eram incorporados em quantidades adequadas a produtos farmacêuticos (radiofármacos), que passaram a ser usados na medicina nuclear para diagnóstico e tratamento de doenças.
Na década de 1950, surgiram vários reatores para gerar eletricidade, trazendo bem‐estar e conforto às populações. O pioneiro foi Obminsk (Rússia), em 1954, e, dois anos depois, Calder Hall (Reino Unido), primeira usina nuclear de larga escala, que funcionou por 50 anos.
(Odilon A. P. Tavares. Disponível em: http://cienciahoje.uol.com.br/. Adaptado.)
Texto III
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET‐CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em: http://redeglobo.globo.com/globociencia/noticia/20...‐especialistas‐medicina‐
nuclear‐ditara‐futuro‐dos‐exames‐de‐imagem.html.)
A rosa de Hiroshima
Pensem nas crianças
Mudas telepáticas
Pensem nas meninas
Cegas inexatas
Pensem nas mulheres
Rotas alteradas
Pensem nas feridas
Como rosas cálidas
Mas oh não se esqueçam
Da rosa da rosa
Da rosa de Hiroshima
A rosa hereditária
A rosa radioativa
Estúpida e inválida
A rosa com cirrose
A antirrosa atômica
Sem cor sem perfume
Sem rosa, sem nada.
(Vinicius de Moraes. In: Ítalo Moriconi (Org.). Os cem melhores poemas
brasileiros do século. Rio de Janeiro: Objetiva, 2001.)
Considerando que o poema “A rosa de Hiroshima", de Vinicius de Moraes, faz uma referência ao uso da energia nuclear citado no texto I “Energia nuclear: ontem e hoje", por ocasião da guerra, é correto afirmar que, em relação ao texto III “O presente e o futuro dos exames de imagem", existe uma
O presente e o futuro dos exames de imagem
Para o professor Celso Darío Ramos, do Departamento de Radiologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (Unicamp), é da medicina nuclear que vem o que há de mais moderno hoje no que diz respeito aos exames de imagem. Um exemplo citado por ele é PET-CT, equipamento que possibilita, ao mesmo tempo, indicar a função biológica de determinado órgão do corpo, por meio da tecnologia PET (tomografia por emissão de pósitrons), bem como mostrar a anatomia de várias partes do corpo, com o auxílio do CT (tomografia computadorizada).
Celso explica que tanto a tomografia por emissão de pósitrons quanto a computadorizada utilizam radiação para produzir imagens. No caso da medicina nuclear, essa radiação é captada dentro do próprio corpo do paciente graças à injeção de um radiofármaco, uma espécie de glicose que emite uma fraca radiação. “Para analisar um tumor, por exemplo, quanto mais agressivo, mais ele consome a glicose radioativa, se tornando radioativo também. Com isso, o equipamento vai identificar as características desse tumor, desde a sua fisiologia ao seu grau de agressividade. Com a medicina nuclear é possível fazer imagens do cérebro para avaliar doenças, bem como da distribuição do sangue no coração", exemplifica o especialista.
(Disponível em:http://redeglobo.globo.com/globociencia/noticia/2013/06/para-
especialistas-medicina-nuclear-ditara-futuro-dos-exames- de-imagem.html.)
A rosa de Hiroshima
Pensem nas crianças
Mudas telepáticas
Pensem nas meninas
Cegas inexatas
Pensem nas mulheres
Rotas alteradas
Pensem nas feridas
Como rosas cálidas
Mas oh não se esqueçam
Da rosa da rosa
Da rosa de Hiroshima
A rosa hereditária
A rosa radioativa
Estúpida e inválida
A rosa com cirrose
A antirrosa atômica
Sem cor sem perfume
Sem rosa, sem nada.
(Vinicius de Moraes. In: Ítalo Moriconi (Org.). Os cem melhores poemas brasileiros do século. Rio de Janeiro: Objetiva, 2001.)
Considerando as relações de coerência estabelecidas por determinadas palavras, indique o par de trechos destacados (textos III e IV) cuja relação indicada pelos termos grifados é a mesma.
A rosa de Hiroshima
Pensem nas crianças
Mudas telepáticas
Pensem nas meninas
Cegas inexatas
Pensem nas mulheres
Rotas alteradas
Pensem nas feridas
Como rosas cálidas
Mas oh não se esqueçam
Da rosa da rosa
Da rosa de Hiroshima
A rosa hereditária
A rosa radioativa
Estúpida e inválida
A rosa com cirrose
A antirrosa atômica
Sem cor sem perfume
Sem rosa, sem nada.
(Vinicius de Moraes. In: Ítalo Moriconi (Org.). Os cem melhores poemas brasileiros do século. Rio de Janeiro: Objetiva, 2001.)
A rosa de Hiroshima
Pensem nas crianças
Mudas telepáticas
Pensem nas meninas
Cegas inexatas
Pensem nas mulheres
Rotas alteradas
Pensem nas feridas
Como rosas cálidas
Mas oh não se esqueçam
Da rosa da rosa
Da rosa de Hiroshima
A rosa hereditária
A rosa radioativa
Estúpida e inválida
A rosa com cirrose
A antirrosa atômica
Sem cor sem perfume
Sem rosa, sem nada.
(Vinicius de Moraes. In: Ítalo Moriconi (Org.). Os cem melhores poemas brasileiros do século. Rio de Janeiro: Objetiva, 2001.)
A rosa de Hiroshima
Pensem nas crianças
Mudas telepáticas
Pensem nas meninas
Cegas inexatas
Pensem nas mulheres
Rotas alteradas
Pensem nas feridas
Como rosas cálidas
Mas oh não se esqueçam
Da rosa da rosa
Da rosa de Hiroshima
A rosa hereditária
A rosa radioativa
Estúpida e inválida
A rosa com cirrose
A antirrosa atômica
Sem cor sem perfume
Sem rosa, sem nada.
(Vinicius de Moraes. In: Ítalo Moriconi (Org.). Os cem melhores poemas brasileiros do século. Rio de Janeiro: Objetiva, 2001.)