Questões de Concurso
Foram encontradas 1.400 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
É possível prever, termodinamicamente, se os reagentes de uma mistura têm a tendência espontânea para se transformarem em produtos, se a composição, no equilíbrio, será modificada ao se alterarem as condições de um sistema, entre outros comportamentos termodinâmicos. Acerca de equilíbrio químico e considerando os gráficos representados nas figuras I, II e III, que mostram três situações de equilíbrio, julgue o item que se segue.
Em uma reação química, a variação da energia de Gibbs de
reação com a temperatura depende da entropia de reação. A
energia de Gibbs de uma reação que produz gás aumenta com
o aumento da temperatura.
Caso G varie como apresentado no gráfico da figura III, uma
proporção alta de produtos tende a se formar antes de G
alcançar seu mínimo.
Com relação à energia interna e à primeira lei da termodinâmica, julgue o item a seguir.
Considere que um gás ideal, ocupando um volume de 2,0 L,
tenha sofrido uma transformação isobárica, a uma pressão de
1,5 atm, e tenha passado a ocupar um volume de 4,5 L,
absorvendo, nesse processo, 1.000 J de calor. Nessa situação,
a variação da energia interna do sistema é superior a 615 J.
Com relação à energia interna e à primeira lei da termodinâmica, julgue o item a seguir.
A única forma de mudar a energia interna de um sistema fechado é transferir energia para ele na forma de calor ou trabalho.
Com relação à energia interna e à primeira lei da termodinâmica, julgue o item a seguir.
Se, em um sistema adiabático, ocorre um processo reversível,
a variação da entropia é maior que zero.
Com relação à energia interna e à primeira lei da termodinâmica, julgue o item a seguir.
Um processo é considerado espontâneo quando ocorre sem a
influência externa. A entropia de um sistema isolado aumenta
durante qualquer mudança espontânea.
O processo de Haber-Bosh, que opera em altas temperaturas e altas pressões, é bastante utilizado para a produção industrial da amônia (NH3). Nesse processo, os gases nitrogênio (N2) e hidrogênio (H2) reagem exotérmica e reversivelmente para formar amônia gasosa (NH3). No processo inverso, a reação de decomposição da amônia em nitrogênio e hidrogênio em superfície de platina apresenta cinética que segue comportamento conforme representado no gráfico acima, que mostra a variação da concentração molar da amônia gasosa [NH3] em função do tempo. Acerca dessas reações, julgue o item a seguir.
Se a taxa de formação da amônia for de 3,2 × 10-2 mol.L-1 .s- 1 , então as taxas de consumo dos gases N2 e H2, serão, respectivamente, 1,6 × 10-2 mol.L-1 .s-1 e 4,8 × 10-2 mol . L- 1.s -1 .
O processo de Haber-Bosh, que opera em altas temperaturas e altas pressões, é bastante utilizado para a produção industrial da amônia (NH3). Nesse processo, os gases nitrogênio (N2) e hidrogênio (H2) reagem exotérmica e reversivelmente para formar amônia gasosa (NH3). No processo inverso, a reação de decomposição da amônia em nitrogênio e hidrogênio em superfície de platina apresenta cinética que segue comportamento conforme representado no gráfico acima, que mostra a variação da concentração molar da amônia gasosa [NH3] em função do tempo. Acerca dessas reações, julgue o item a seguir.
A partir do gráfico, é correto concluir que a reação envolvida
é de ordem zero e que o módulo do valor da inclinação da reta
representa a constante de velocidade da reação de consumo
da amônia.
No ciclo de Carnot, ilustrado acima, no gráfico de pressão (P) versus volume (V), ocorrem processos reversíveis que passam pelos estados A, B, C e D. Considerando que as curvas do gráfico apresentam o comportamento de um gás ideal em um sistema fechado, que os processos BC e DA são adiabáticos e que AB e CD são isotérmicos, ocorrendo nas temperaturas T2 e T1, respectivamente, julgue o item subsequente.
Nas condições especificadas, se T1 for menor do que T2, o
rendimento desse ciclo será de 100%.
No ciclo de Carnot, ilustrado acima, no gráfico de pressão (P) versus volume (V), ocorrem processos reversíveis que passam pelos estados A, B, C e D. Considerando que as curvas do gráfico apresentam o comportamento de um gás ideal em um sistema fechado, que os processos BC e DA são adiabáticos e que AB e CD são isotérmicos, ocorrendo nas temperaturas T2 e T1, respectivamente, julgue o item subsequente.
O trabalho e o calor não são funções de estado, diferentemente
da energia interna, que depende somente do estado em que se
encontra o sistema.
No ciclo de Carnot, ilustrado acima, no gráfico de pressão (P) versus volume (V), ocorrem processos reversíveis que passam pelos estados A, B, C e D. Considerando que as curvas do gráfico apresentam o comportamento de um gás ideal em um sistema fechado, que os processos BC e DA são adiabáticos e que AB e CD são isotérmicos, ocorrendo nas temperaturas T2 e T1, respectivamente, julgue o item subsequente.
A variação da entropia para o sistema e suas vizinhanças, após
o gás percorrer o ciclo acima e retornar ao estado inicial A, é
nula.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
Excluindo-se as possibilidades de infusão direta, os espectros mostrados só poderiam ser obtidos por acoplamento com a cromatografia gasosa (CG-EM/EM), pois a cromatografia líquida é incompatível com a espectrometria de massas.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
A resolução dos espectros de massas mostrados indica que o
espectrômetro de massas utilizado nesse experimento possui
pelo menos um analisador de massas do tipo tempo de voo.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
Quando se utiliza um espectrômetro de massas como detector
de cromatografia gasosa (CG-EM), não é possível obter o
espectro de massas tandem dos analitos, pois o tempo de
eluição de cada pico cromatográfico é demasiadamente curto
para que se possa selecionar o íon precursor (parent ion) e, em
seguida, programar o equipamento para obter o espectro de
massas tandem desse íon, alterando-se do modo EM para o
modo EM/EM.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
Caso o equipamento de espectrometria de massas tandem
(EM/EM) possua dois analisadores de massas, o experimento
deve ser realizado em duas etapas: uma espectrometria de
massas simples (EM) é feita para se identificar todos os íons
presentes na amostra; em seguida, o íon precursor (parent ion)
é selecionado no primeiro analisador de massas, direcionado
para uma câmara de fragmentação, e, na sequência, para o
segundo analisador de massas, onde os fragmentos são
analisados.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
Nos espectros, pode-se observar que, quanto maior o valor da
CID, maior é a fragmentação do íon precursor, o que confirma
as teorias da espectrometria de massas tandem (EM/EM),
segundo as quais, para uma maior energia de colisão, espera-se
que mais ligações sejam clivadas, o que aumenta a
fragmentação do íon precursor.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
Considerando-se que o espectrômetro de massa opere em modo
positivo, é correto concluir que a carga do íon com m/z = 330,0
é igual ou superior a +2.
Considerando os gráficos acima, que representam espectros de massas de fragmentação (EM/EM) de um íon com m/z = 330,0 de uma truxilina, obtidos com três diferentes energias de colisão — collision-induced dissociation (CID): (a) CID = 5, (b) CID = 10 e (c) CID = 20, julgue os itens de 102 a 109, relativos à espectrometria de massas.
A truxilina analisada possui massa molecular igual a
330,0 g/mol.
Em 2007, a Polícia Federal instituiu um programa chamado perfil químico de drogas (PeQui), que, por meio de correlações químicas entre amostras, tem gerado informações importantes para as autoridades de repressão ao tráfico de entorpecentes. Por meio dele, pode-se, por exemplo, determinar se amostras de diferentes apreensões são oriundas de uma mesma fonte, o que favorece o estabelecimento de ligações específicas entre diferentes fornecedores e a identificação de rotas e redes de distribuição. A análise do perfil de truxilinas, principais alcaloides presentes na cocaína, pode revelar a origem da droga, pois a razão entre truxilinas e cinamoilcocaína altera-se com a intensidade de radiação ultravioleta dos raios solares na região de cultivo da folha de coca.
Truxilinas são analisadas por cromatografia gasosa com detector de captura de elétrons (CG-DCE). Durante a corrida cromatográfica, a temperatura do forno permanece inicialmente a 100 °C por 5 min. Em seguida, a temperatura é elevada a 25 °C/min até 160 °C, depois a 4 °C/min até 245 °C e, finalmente, a 25 °C/min até 280 °C. Hélio é usado como gás de arraste a um fluxo de 1,0 mL/min. A amostra é injetada em uma alça de injeção de 1,0 μL, em modo splitless, com o injetor mantido a 250 °C. O detector de captura de elétrons permanece a 300 °C, com fluxo de nitrogênio de 60,0 mL/min.
No gráfico acima, é representado o cromatograma de uma análise de truxilinas segundo o método descrito e, na tabela, são relacionados os compostos e os tempos de retenção (tr ) de cada pico indicado no cromatograma.
Considerando o texto e os dados apresentados, bem como os conceitos teóricos da cromatografia em fase gasosa, julgue o item de 92 a 101.
No DCE, o bombardeamento do nitrogênio — gás que fornece
os elétrons que serão capturados pelas moléculas dos analitos
— por elétrons oriundos de uma fonte radioativa emissora de
partículas β, existente no próprio detector, forma uma rajada de
elétrons que atinge a amostra que, por sua vez, elui da coluna
cromatográfica.
Em 2007, a Polícia Federal instituiu um programa chamado perfil químico de drogas (PeQui), que, por meio de correlações químicas entre amostras, tem gerado informações importantes para as autoridades de repressão ao tráfico de entorpecentes. Por meio dele, pode-se, por exemplo, determinar se amostras de diferentes apreensões são oriundas de uma mesma fonte, o que favorece o estabelecimento de ligações específicas entre diferentes fornecedores e a identificação de rotas e redes de distribuição. A análise do perfil de truxilinas, principais alcaloides presentes na cocaína, pode revelar a origem da droga, pois a razão entre truxilinas e cinamoilcocaína altera-se com a intensidade de radiação ultravioleta dos raios solares na região de cultivo da folha de coca.
Truxilinas são analisadas por cromatografia gasosa com detector de captura de elétrons (CG-DCE). Durante a corrida cromatográfica, a temperatura do forno permanece inicialmente a 100 °C por 5 min. Em seguida, a temperatura é elevada a 25 °C/min até 160 °C, depois a 4 °C/min até 245 °C e, finalmente, a 25 °C/min até 280 °C. Hélio é usado como gás de arraste a um fluxo de 1,0 mL/min. A amostra é injetada em uma alça de injeção de 1,0 μL, em modo splitless, com o injetor mantido a 250 °C. O detector de captura de elétrons permanece a 300 °C, com fluxo de nitrogênio de 60,0 mL/min.
No gráfico acima, é representado o cromatograma de uma análise de truxilinas segundo o método descrito e, na tabela, são relacionados os compostos e os tempos de retenção (tr ) de cada pico indicado no cromatograma.
Considerando o texto e os dados apresentados, bem como os conceitos teóricos da cromatografia em fase gasosa, julgue o item de 92 a 101.
Caso o fluxo do gás hélio seja controlado por um regulador de
pressão de dois estágios instalado no cilindro de gás, associado
a um regulador de pressão ou regulador de fluxo montado no
cromatógrafo, admite-se que, se a pressão de entrada
permanecer constante, a vazão do gás também será constante.