Questões de Concurso
Foram encontradas 2.174 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
Se os espelhos que formam a cavidade do laser refletem 100% e 95% da intensidade da luz, respectivamente, os dois espelhos não refletem totalmente os feixes, pois um deles deve deixar passar a luz, o chamado feixe emergente.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
Esse laser emite mais que 2,00 × 1020 fótons por segundo.
Tendo como referência inicial essas informações e considerando que o valor da carga do elétron seja igual a 1,6 × 10−19, que a transição do laser se dê entre dois níveis de energia, sendo a diferença de energia entre esses níveis E = 1.026 eV, e que a constante de Planck (h) corresponda a 6,62 × 10−34 J.s, julgue o item seguinte.
O comprimento de onda emitido por esse laser é maior que 1.200 nm.
O interferômetro de Michelson é utilizado para medir comprimentos de onda da luz com grande precisão, a partir da contagem do número de franjas que se deslocam na figura de interferência.
A análise dos fenômenos de interferência e de difração mostra que, em mecânica quântica, não se pode simplesmente trabalhar com leis de probabilidade, como se faz nos fenômenos aleatórios clássicos.
Quanto mais lenta for a velocidade do referencial em relação à velocidade da luz, mais perceptível será a dilatação do tempo.
O comprimento medido em um referencial inercial em relação ao qual o corpo se move na direção da dimensão que está sendo medida é sempre maior que o comprimento próprio.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
No experimento realizado, não ocorre o fenômeno
da difração.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Sabendo-se que o espaçamento entre as franjas de
interferência é de 2 × 10−6 μm, é correto afirmar que o
comprimento de onda da onda associada aos elétrons é
de 5 pm.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Se a velocidade dos elétrons fosse multiplicada por dois, o
comprimento de onda associado seria reduzido em 50%.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Para que haja interferências entre duas ondas luminosas, a
diferença de fase entre elas deve variar com o tempo.
Com o intuito de caracterizar um feixe de elétrons usando-se o experimento de fendas de Young, um feixe de elétrons é bombardeado sobre uma placa com duas fendas. Os elétrons são lançados à velocidade de 1,3 × 108 m/s. Um anteparo é colocado atrás da placa, de modo a imprimir o impacto de cada elétron. No início do experimento, observam-se impactos distribuídos aleatoriamente por todo o anteparo; no entanto, após um número suficientemente grande de impactos, um padrão de interferência aparece na tela (para um número de impactos maior que 5.000). A figura a seguir ilustra de forma simplificada essa experiência.
Com relação a essa experiência, julgue o item a seguir.
Nessa experiência, constata-se que um elétron isolado pode
ser considerado uma partícula clássica cuja trajetória pode
ser prevista.
A birrefringência ocorre quando um raio de luz decomposto em duas porções atravessa alguns sólidos cristalinos isotrópicos, como, por exemplo, a calcita ou o quartzo.
As polarizações retilínea e circular são estados de polarização particulares da polarização elíptica; no caso da polarização linear, a direção do campo elétrico no plano da onda é considerada fixa.
O conceito de polarização de uma onda luminosa está relacionado ao caráter vetorial do campo elétrico E, que se conserva sempre no mesmo plano da onda transversal.
De acordo com a Lei de Gauss para campos magnéticos, dada pela expressão ΦB = ∮SB∙dA = 0, o fluxo magnético ΦB através de qualquer superfície gaussiana é zero; isso significa afirmar que não existem monopolos magnéticos.
Todo material paramagnético submetido a um campo magnético externo apresenta um momento dipolar magnético orientado no mesmo sentido que o campo magnético externo. Entretanto, se o campo magnético externo for não uniforme, o material paramagnético será atraído da região onde o campo magnético for mais intenso para a região onde o campo magnético for menos intenso.
Considere que um fio condutor longo e reto de raio de seção transversal igual a R seja percorrido por uma corrente constante I0, uniformemente distribuída pela seção transversal do fio. Nessa situação, o campo magnético a uma distância r do centro do fio numa região cujo r > R é dado por B = μ0∙I0/2∙π∙r.
Considere uma bobina constituída de 200 voltas de fio condutor com uma resistência total de 2 Ω. Suponha que cada volta do fio seja um quadrado de 20 cm de lado e que um campo magnético uniforme direcionado perpendicularmente ao plano da bobina seja ativado. Nessa situação, se o campo mudar linearmente de 0 a 0,5 T em 1 s, o módulo da força eletromotriz induzida na bobina, enquanto o campo está variando, será de 8 V.
Quando uma partícula eletricamente carregada se move com uma velocidade vetorial v através de um campo magnético uniforme, o campo pode alterar a direção do vetor velocidade, mas não pode alterar o módulo da velocidade ou a energia cinética da partícula.