Questões de Concurso Para serpro

Foram encontradas 5.382 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q609400 Redes de Computadores
Um protocolo que é resultado da combinação das funcionalidades de multiplexação estatística e compartilhamento de portas do X.25, com as características de alta velocidade e baixo atraso (delay) dos circuitos TDM; e que utiliza circuitos digitais (PVC e SVC) é o:
Alternativas
Q609399 Redes de Computadores
Uma tecnologia de comunicação de dados de alta velocidade usada para interligar redes locais, metropolitanas e de longa distância para aplicações de dados, voz, áudio e vídeo, cuja célula contém 48 bytes destinados à informação útil e 5 bytes para cabeçalho é o(a):
Alternativas
Q609398 Redes de Computadores
No ambiente de protocolos de redes, a seqüência de portas de acesso

25, 110, 23, 21

é associada aos respectivos serviços ou protocolos:

Alternativas
Q609397 Redes de Computadores
Sobre tipos de recursos do DNS, faça a respectiva associação dos nomes dos recursos ao seu significado ou uso.

I. Mapeamento de um nome para IPv4.

II. Mapeamento de um nome para IPv6.

III. Servidor de e-mail.

IV. Redirecionamento de um nome para outro nome.

V. Associação de certificado TLS.

Alternativas
Q609396 Redes de Computadores
São resoluções de DNS:
Alternativas
Q609395 Governança de TI
Observe a seguinte lista.

I. Incidentes.

II. Projetos.

III. Entrega.

IV. SLA.

V. Mudanças.

São gerências no ITIL: 

Alternativas
Q609394 Raciocínio Lógico
Determinado game on line de combate pontua seus jogadores da seguinte forma: cada combate ganho vale 3 pontos; cada empate vale 1 ponto; e as derrotas não contabilizam ponto.

Durante a criação desse game, o programador ficou na dúvida sobre o que fazer quando houvesse empate, entre dois jogadores, na contagem de ponto, após uma série de combates. "Ficaria na frente o jogador com mais vitórias ou o jogador com mais derrotas?" 

Após analisar a situação dada, podemos concluir que: 


Alternativas
Q609393 Raciocínio Lógico
Ao se rearranjarem as letras do nome QUADRIX, de todas as formas possíveis, escrevendo cada uma das palavras geradas (conhecidas ou não) em ordem alfabética, em uma lista numerada, a própria palavra QUADRIX seria a de número:
Alternativas
Q609392 Raciocínio Lógico
Uma urna tem 2 bolas brancas, 15 vermelhas, 23 azuis e 10 verdes, todas indistinguíveis pelo tato. Ao se retirar, aleatoriamente e sem olhar, 9 bolas dessa urna, qual é a probabilidade de três delas serem da mesma cor?
Alternativas
Q609391 Matemática
Leia o texto com atenção.

A cerco de 100 metros de profundidade, sob a fronteira entrea França e a Suíça, existe uma máquina circular que podenos revelar os segredos do universo.

[...]

Estamos falando doGrande Colisor de Hádrons ou LHC (Large Hadron Collider).U0 LHC produz feixes de prótons e íons em velocidades que seaproximam da velocidade da luz. Ele faz com que os feixescolidam uns com os outros e em seguida registra os eventosresultantes dessa colisão.

(http://ciencia.hsw.uol.com.br - acesso em 27 jan. 2014) 

Sabe-se que o perímetro da circunferência do LHC é de 27quilômetros. Se seu perímetro fosse aumentado em apenas1 metro e sua estrutura fosse, novamente, disposta naforma circular, seu raio aumentaria em aproximadamente:(Dado: π ≅  3,14)

Alternativas
Q609390 Inglês

Everyone keeps data. Big organizations spend millions to look after their payroll, customer and transaction data. The penalties for getting it wrong are severe: businesses may collapse, shareholders and customers lose money, and for many organizations (airlines, health boards, energy companies), it is not exaggerating to say that even personal safety may be put at risk. And then there are the lawsuits. The problems in successfully designing, installing, and maintaining such large databases are the subject of numerous books on data management and software engineering. However, many small databases are used within large organizations and also for small businesses, clubs, and private concerns. When these go wrong, it doesn't make the front page of the papers; but the costs, often hidden, can be just as serious.

 Where do we find these smaller electronic databases? Sports clubs will have membership information and match results; small businesses might maintain their own customer data. Within large organizations, there will also be a number of small projects to maintain data information that isn't easily or conveniently managed by the large system-wide databases. Researchers may keep their own experiment and survey results; groups will want to manage their own rosters or keep track of equipment; departments may keep their own detailed accounts and submit just a summary to the organization's financial software.

Most of these small databases are set up by end users. These are people whose main job is something other than that of a Computer professional. They will typically be scientists, administrators, technicians, accountants, or teachers, and many will have only modest skills when it comes to spreadsheet or database software. 

The resulting databases often do not live up to expectations. Time and energy is expended to set up a few tables in a database product such as Microsoft Access, or in setting up a spreadsheet in a product such as Excel. Even more time is spent collecting and keying in data. But invariably (often within a short time frame) there is a problem producing what seems to be a quite simple report or query. Often this is because the way the tables have been set up makes the required result very awkward, if not impossible, to achieve. 

A database that does not fulfill expectations becomes a costly exercise in more ways than one. We clearly have the cost of the time and effort expended on setting up an unsatisfactory application. However, a much more serious problem is the unability to make the best use of valuable data. This is especially so for research data. Scientific and social researchers may spend considerable money and many years designing experiments, hiring assistants and collecting and analyzing data, but often very little thought goes into storing it in an appropriately designed database. Unfortunately, some quite simple mistakes in design can mean that much of the potential information is lost. The immediate objective may be satisfied, but unforeseen uses of the data may be seriously compromised. Next year's grant opportunities are lost.

The word awkward, in the fourth paragraph:
Alternativas
Q609389 Inglês

Everyone keeps data. Big organizations spend millions to look after their payroll, customer and transaction data. The penalties for getting it wrong are severe: businesses may collapse, shareholders and customers lose money, and for many organizations (airlines, health boards, energy companies), it is not exaggerating to say that even personal safety may be put at risk. And then there are the lawsuits. The problems in successfully designing, installing, and maintaining such large databases are the subject of numerous books on data management and software engineering. However, many small databases are used within large organizations and also for small businesses, clubs, and private concerns. When these go wrong, it doesn't make the front page of the papers; but the costs, often hidden, can be just as serious.

 Where do we find these smaller electronic databases? Sports clubs will have membership information and match results; small businesses might maintain their own customer data. Within large organizations, there will also be a number of small projects to maintain data information that isn't easily or conveniently managed by the large system-wide databases. Researchers may keep their own experiment and survey results; groups will want to manage their own rosters or keep track of equipment; departments may keep their own detailed accounts and submit just a summary to the organization's financial software.

Most of these small databases are set up by end users. These are people whose main job is something other than that of a Computer professional. They will typically be scientists, administrators, technicians, accountants, or teachers, and many will have only modest skills when it comes to spreadsheet or database software. 

The resulting databases often do not live up to expectations. Time and energy is expended to set up a few tables in a database product such as Microsoft Access, or in setting up a spreadsheet in a product such as Excel. Even more time is spent collecting and keying in data. But invariably (often within a short time frame) there is a problem producing what seems to be a quite simple report or query. Often this is because the way the tables have been set up makes the required result very awkward, if not impossible, to achieve. 

A database that does not fulfill expectations becomes a costly exercise in more ways than one. We clearly have the cost of the time and effort expended on setting up an unsatisfactory application. However, a much more serious problem is the unability to make the best use of valuable data. This is especially so for research data. Scientific and social researchers may spend considerable money and many years designing experiments, hiring assistants and collecting and analyzing data, but often very little thought goes into storing it in an appropriately designed database. Unfortunately, some quite simple mistakes in design can mean that much of the potential information is lost. The immediate objective may be satisfied, but unforeseen uses of the data may be seriously compromised. Next year's grant opportunities are lost.

In the fourth paragraph, the expression in bold could be translated to Portuguese by:
Alternativas
Q609388 Inglês

Everyone keeps data. Big organizations spend millions to look after their payroll, customer and transaction data. The penalties for getting it wrong are severe: businesses may collapse, shareholders and customers lose money, and for many organizations (airlines, health boards, energy companies), it is not exaggerating to say that even personal safety may be put at risk. And then there are the lawsuits. The problems in successfully designing, installing, and maintaining such large databases are the subject of numerous books on data management and software engineering. However, many small databases are used within large organizations and also for small businesses, clubs, and private concerns. When these go wrong, it doesn't make the front page of the papers; but the costs, often hidden, can be just as serious.

 Where do we find these smaller electronic databases? Sports clubs will have membership information and match results; small businesses might maintain their own customer data. Within large organizations, there will also be a number of small projects to maintain data information that isn't easily or conveniently managed by the large system-wide databases. Researchers may keep their own experiment and survey results; groups will want to manage their own rosters or keep track of equipment; departments may keep their own detailed accounts and submit just a summary to the organization's financial software.

Most of these small databases are set up by end users. These are people whose main job is something other than that of a Computer professional. They will typically be scientists, administrators, technicians, accountants, or teachers, and many will have only modest skills when it comes to spreadsheet or database software. 

The resulting databases often do not live up to expectations. Time and energy is expended to set up a few tables in a database product such as Microsoft Access, or in setting up a spreadsheet in a product such as Excel. Even more time is spent collecting and keying in data. But invariably (often within a short time frame) there is a problem producing what seems to be a quite simple report or query. Often this is because the way the tables have been set up makes the required result very awkward, if not impossible, to achieve. 

A database that does not fulfill expectations becomes a costly exercise in more ways than one. We clearly have the cost of the time and effort expended on setting up an unsatisfactory application. However, a much more serious problem is the unability to make the best use of valuable data. This is especially so for research data. Scientific and social researchers may spend considerable money and many years designing experiments, hiring assistants and collecting and analyzing data, but often very little thought goes into storing it in an appropriately designed database. Unfortunately, some quite simple mistakes in design can mean that much of the potential information is lost. The immediate objective may be satisfied, but unforeseen uses of the data may be seriously compromised. Next year's grant opportunities are lost.

In the last paragraph, the line in bold, there is a word not correctly written. It is:
Alternativas
Q609387 Inglês

Everyone keeps data. Big organizations spend millions to look after their payroll, customer and transaction data. The penalties for getting it wrong are severe: businesses may collapse, shareholders and customers lose money, and for many organizations (airlines, health boards, energy companies), it is not exaggerating to say that even personal safety may be put at risk. And then there are the lawsuits. The problems in successfully designing, installing, and maintaining such large databases are the subject of numerous books on data management and software engineering. However, many small databases are used within large organizations and also for small businesses, clubs, and private concerns. When these go wrong, it doesn't make the front page of the papers; but the costs, often hidden, can be just as serious.

 Where do we find these smaller electronic databases? Sports clubs will have membership information and match results; small businesses might maintain their own customer data. Within large organizations, there will also be a number of small projects to maintain data information that isn't easily or conveniently managed by the large system-wide databases. Researchers may keep their own experiment and survey results; groups will want to manage their own rosters or keep track of equipment; departments may keep their own detailed accounts and submit just a summary to the organization's financial software.

Most of these small databases are set up by end users. These are people whose main job is something other than that of a Computer professional. They will typically be scientists, administrators, technicians, accountants, or teachers, and many will have only modest skills when it comes to spreadsheet or database software. 

The resulting databases often do not live up to expectations. Time and energy is expended to set up a few tables in a database product such as Microsoft Access, or in setting up a spreadsheet in a product such as Excel. Even more time is spent collecting and keying in data. But invariably (often within a short time frame) there is a problem producing what seems to be a quite simple report or query. Often this is because the way the tables have been set up makes the required result very awkward, if not impossible, to achieve. 

A database that does not fulfill expectations becomes a costly exercise in more ways than one. We clearly have the cost of the time and effort expended on setting up an unsatisfactory application. However, a much more serious problem is the unability to make the best use of valuable data. This is especially so for research data. Scientific and social researchers may spend considerable money and many years designing experiments, hiring assistants and collecting and analyzing data, but often very little thought goes into storing it in an appropriately designed database. Unfortunately, some quite simple mistakes in design can mean that much of the potential information is lost. The immediate objective may be satisfied, but unforeseen uses of the data may be seriously compromised. Next year's grant opportunities are lost.

According to the text above:
Alternativas
Q609380 Legislação Federal
Tendo em vista o que dispõe o Decreto nº 6.791/2009 sobre a Diretoria do SERPRO, assinale a alternativa incorreta.
Alternativas
Q609379 Legislação Federal
Assinale a alternativa que completa corretamente a lacuna a seguir.

Conforme disposição contida no Decreto nº 6.791/2009, o Conselho Diretor deliberará por maioria de votos, com a presença de, no mínimo, __________ de seus membros, entre eles o Presidente do Conselho ou seu substituto, cabendo ao Presidente, além de voto comum, o de qualidade. 

Alternativas
Q609378 Legislação Federal
É uma das finalidades do SERPRO, previstas no Decreto n9 6791/2009, atender prioritariamente, com exclusividade, aos órgãos do(a):
Alternativas
Q609377 Legislação Federal
O Serviço Federal de Processamento de Dados, segundo o Decreto n9 6.791/2009, possui a natureza de:
Alternativas
Ano: 2014 Banca: Quadrix Órgão: SERPRO Prova: Quadrix - 2014 - SERPRO - Técnico - Suporte |
Q604653 Segurança da Informação
Em um Plano de Recuperação de Desastre, o local externo contratado que permite a configuração e pré-instalação do hardware e dos links de comunicação necessários para, se ocorrer um desastre, carregar o software e os backups de dados recentes para restaurar os sistemas de negócio em até 72h, caracteriza uma solução do tipo:
Alternativas
Ano: 2014 Banca: Quadrix Órgão: SERPRO Prova: Quadrix - 2014 - SERPRO - Técnico - Suporte |
Q604652 Programação
No TOMCAT o Container Web e um Servlet que realiza compilação de JSP são denominados, respectivamente:
Alternativas
Respostas
981: B
982: C
983: E
984: A
985: A
986: D
987: D
988: C
989: D
990: C
991: B
992: D
993: A
994: C
995: D
996: A
997: E
998: B
999: E
1000: C