Questões de Concurso
Para engenharia elétrica
Foram encontradas 14.330 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
I. Quanto maior a capacidade da subestação, maior o custo por kVA.
II. Quanto maior o número de subestações unitárias, maior será o emprego de cabos de tensão primária.
III. Desde que convenientemente localizadas, quanto maior for o número de subestações unitárias, menor será o emprego de cabos de baixa tensão.
IV. Quanto menor for o número de subestações unitárias de capacidade elevada, menor será o emprego de cabos de tensão primária e maior o uso de cabos de baixa tensão.
Sobre os motores de indução monofásicos de polo ranhurado, analise as seguintes afirmativas e assinale a alternativa correta.
I. As correntes induzidas na bobina de arraste fazem com que o fluxo presente na porção sombreada do polo atrase-se em relação ao fluxo da porção não sombreada. O resultado dessa interação é similar a um campo girante que se move da porção não sombreada para a porção sombreada; correntes são induzidas no rotor e um alto conjugado de partida é produzido.
II. A simplicidade construtiva, o baixo custo, o alto fator de potência e o alto conjugado de partida são as principais vantagens dos motores de indução monofásicos de polo ranhurado.
III. O rotor gaiola de esquilo, que é amplamente empregado em outros tipos de motores de indução monofásicos, também é utilizado em motores de indução monofásicos de polo ranhurado.
IV. Ainda que seja considerada uma máquina rotativa de potência fracionária, os motores de indução
monofásicos de polo ranhurado não são produzidos com potência nominal inferior a 100 W, o que
se deve a sua alta eficiência. A faixa de potência de até 100 W é atendida exclusivamente por
motores universais.
Em um motor de indução monofásico de capacitor de partida, alimentado na frequência de 60 Hz, em que a impedância do enrolamento principal é = (5 + j5) Ω e a impedância do enrolamento auxiliar é = (8 + j3) Ω, o valor da capacitância de um capacitor a ser colocado em série com o enrolamento auxiliar para alcançar uma diferença de fase de exatamente 90º elétricos entre as correntes dos dois enrolamentos durante a partida é:
Associação Brasileira de Normas Técnicas. ABNT NBR 5410: instalações elétricas de baixa tensão. Rio de Janeiro: ABNT, 2008. [Adaptado].
I. Um dos requisitos para a utilização de condutores de alumínio em instalações de estabelecimentos industriais é que a instalação e a manutenção sejam realizadas por pessoas qualificadas, ou seja, pessoas com conhecimento técnico ou experiência tal que lhes permite evitar os perigos da eletricidade (engenheiros e técnicos). II. Um dos requisitos para a utilização de condutores de alumínio em instalações de estabelecimentos industriais é que a seção nominal dos condutores seja igual ou superior a 16 mm².
III. Um dos requisitos para a utilização de condutores de alumínio em instalações de estabelecimentos comerciais é que a seção nominal dos condutores seja igual ou superior a 50 mm².
IV. Em instalações de estabelecimentos comerciais não é permitido, em nenhuma circunstância, o emprego de condutores de alumínio.
( ) Aplica-se exclusivamente às instalações novas.
( ) Aplica-se às instalações elétricas de canteiros de obra, feiras, exposições e outras instalações temporárias.
( ) Aplica-se aos circuitos elétricos alimentados sob tensão nominal igual ou inferior a 1000 V em corrente alternada, com frequências inferiores a 400 Hz, ou a 1500 V em corrente contínua.
( ) Não se aplica às instalações de iluminação pública.
( ) Não se aplica às instalações elétricas em áreas descobertas das propriedades, externas às edificações.
( ) Não se aplica a instalações em minas.
I. A resistência elétrica (R) de um determinado material condutor pode ser determinada por meio da relação R= l/(pA), em que l é o comprimento do condutor, p é a resistividade elétrica do material do condutor e A é a área da seção transversal reta do condutor.
II. A resistividade elétrica é uma característica específica de cada material que define o quanto ele se opõe à passagem de uma corrente elétrica. Na temperatura de 20 ºC, a resistividade elétrica do alumínio é maior que a do cobre; consequentemente, para valores próximos dessa temperatura, um condutor de alumínio apresenta menor resistência elétrica que um condutor de cobre com as mesmas dimensões.
III. A condutividade elétrica é uma propriedade dos materiais que corresponde ao inverso da resistividade elétrica.
IV. A resistência de um elemento condutor varia com a temperatura. Para valores entre -200 ºC e +1084,62 ºC, que é o ponto de fusão de cobre, a resistência elétrica de um elemento condutor de cobre decresce linearmente com o aumento da sua temperatura.
V. A relação entre a temperatura de um condutor de cobre e sua resistência elétrica é linear para valores entre -200 ºC e +1084,62 ºC; logo, é possível obter o valor da resistência elétrica do condutor (R) para qualquer valor de temperatura (T) dessa ampla faixa de valores por meio da relação R = R0 (1 + α(T − T0)), em que R0 é a resistência elétrica obtida em uma temperatura T0, e α é o coeficiente de temperatura da resistividade do cobre.
Sabendo que tal sistema trifásico é simétrico e equilibrado, chamando de I1, V1 e P1, respectivamente, a corrente eficaz, a tensão eficaz e a potência ativa medidas por M1, bem como I2, V2 e P2, respectivamente, a corrente eficaz, a tensão eficaz e a potência ativa medidas por M2, para obter a medida da grandeza desejada deve-se efetuar a
É correto afirmar:
Dados: K1 e K2 são instrumentos de medidas, respectivamente, para corrente elétrica e tensão elétrica.
Com a chave CH na posição
Analisando esse circuito e desprezando as perdas nos condutores, para o voltímetro V acusar equilíbrio de calibração (tensão zero), a relação R3/Rx deve ser igual a
Considere:
B0 = botão de impulso contato fechado B1 e B2 = botão de impulso contato aberto K1 e K2 = contatores auxiliares K3 e K4 = contatores de potência
Corresponde ao funcionamento correto do circuito de comando representado:
Considere o circuito a seguir.
Considerar π = 3,14
A impedância aproximada do circuito corresponde a:
(Disponível em: https://blog.rhmateriaiseletricos.com.br)
A curva característica indicada pela seta representa