Questões de Vestibular Sobre 1ª lei da termodinâmica em física

Foram encontradas 137 questões

Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108376 Física
A descoberta do eletromagnetismo significou uma grande revolução para a humanidade: a possibilidade de transporte quase instantâneo de grandes quantidades de energia a longas distâncias. O entendimento dos fluxos energéticos e de suas perdas, ao longo da cadeia de produção, transporte e utilização da energia elétrica, é de fundamental importância para o aumento da eficiência energética e a mitigação de seus efeitos sobre a natureza. 

Para o estudo simplificado desses processos, foi criado um sistema constituído por um motor de combustão a diesel que opera em um ciclo de Carnot, conforme figura a seguir. A cada ciclo do motor, uma quantidade de calor Q1 é fornecida pela queima do diesel, um trabalho W é realizado e um calor Q2 é ejetado para fora do motor. O motor faz girar uma bobina com velocidade angular constante ω de 21.600 graus por segundo, em uma região preenchida por um campo magnético uniforme e estacionário, gerado por um ímã permanente, com intensidade 1/12π tesla. Na bobina, está enrolado um fio condutor formando por N = 22 espiras circulares cuja área de seção transversal é igual a A = 1 m2 . Devido à indução magnética, uma força eletromotriz ξ é gerada em uma tomada que está ligada a um circuito, fornecendo corrente elétrica I a um aparelho de resistência equivalente igual a R. A resistência interna dos fios da bobina e da tomada é denotada por R’. O eixo de rotação da bobina é perpendicular ao campo magnético.

De maneira simplificada, pode-se considerar que o motor e a bobina representam uma usina geradora de energia elétrica, os fios que ligam a bobina até a tomada representam as linhas de transmissão e o aparelho ligado à tomada representa os dispositivos movidos a energia elétrica. 


Com base nas informações fornecidas no texto precedente e na figura apresentada, julgue o item.


A eficiência termodinâmica do motor é de 75%.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108373 Física
A descoberta do eletromagnetismo significou uma grande revolução para a humanidade: a possibilidade de transporte quase instantâneo de grandes quantidades de energia a longas distâncias. O entendimento dos fluxos energéticos e de suas perdas, ao longo da cadeia de produção, transporte e utilização da energia elétrica, é de fundamental importância para o aumento da eficiência energética e a mitigação de seus efeitos sobre a natureza. 

Para o estudo simplificado desses processos, foi criado um sistema constituído por um motor de combustão a diesel que opera em um ciclo de Carnot, conforme figura a seguir. A cada ciclo do motor, uma quantidade de calor Q1 é fornecida pela queima do diesel, um trabalho W é realizado e um calor Q2 é ejetado para fora do motor. O motor faz girar uma bobina com velocidade angular constante ω de 21.600 graus por segundo, em uma região preenchida por um campo magnético uniforme e estacionário, gerado por um ímã permanente, com intensidade 1/12π tesla. Na bobina, está enrolado um fio condutor formando por N = 22 espiras circulares cuja área de seção transversal é igual a A = 1 m2 . Devido à indução magnética, uma força eletromotriz ξ é gerada em uma tomada que está ligada a um circuito, fornecendo corrente elétrica I a um aparelho de resistência equivalente igual a R. A resistência interna dos fios da bobina e da tomada é denotada por R’. O eixo de rotação da bobina é perpendicular ao campo magnético.

De maneira simplificada, pode-se considerar que o motor e a bobina representam uma usina geradora de energia elétrica, os fios que ligam a bobina até a tomada representam as linhas de transmissão e o aparelho ligado à tomada representa os dispositivos movidos a energia elétrica. 


Com base nas informações fornecidas no texto precedente e na figura apresentada, julgue o item.


No ciclo termodinâmico do motor, o trabalho realizado pelo motor é de 400 J.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108372 Física
A descoberta do eletromagnetismo significou uma grande revolução para a humanidade: a possibilidade de transporte quase instantâneo de grandes quantidades de energia a longas distâncias. O entendimento dos fluxos energéticos e de suas perdas, ao longo da cadeia de produção, transporte e utilização da energia elétrica, é de fundamental importância para o aumento da eficiência energética e a mitigação de seus efeitos sobre a natureza. 

Para o estudo simplificado desses processos, foi criado um sistema constituído por um motor de combustão a diesel que opera em um ciclo de Carnot, conforme figura a seguir. A cada ciclo do motor, uma quantidade de calor Q1 é fornecida pela queima do diesel, um trabalho W é realizado e um calor Q2 é ejetado para fora do motor. O motor faz girar uma bobina com velocidade angular constante ω de 21.600 graus por segundo, em uma região preenchida por um campo magnético uniforme e estacionário, gerado por um ímã permanente, com intensidade 1/12π tesla. Na bobina, está enrolado um fio condutor formando por N = 22 espiras circulares cuja área de seção transversal é igual a A = 1 m2 . Devido à indução magnética, uma força eletromotriz ξ é gerada em uma tomada que está ligada a um circuito, fornecendo corrente elétrica I a um aparelho de resistência equivalente igual a R. A resistência interna dos fios da bobina e da tomada é denotada por R’. O eixo de rotação da bobina é perpendicular ao campo magnético.

De maneira simplificada, pode-se considerar que o motor e a bobina representam uma usina geradora de energia elétrica, os fios que ligam a bobina até a tomada representam as linhas de transmissão e o aparelho ligado à tomada representa os dispositivos movidos a energia elétrica. 


Com base nas informações fornecidas no texto precedente e na figura apresentada, julgue o item.


A energia dissipada por efeito Joule no circuito elétrico deve ser igual ao calor dissipado pelo motor.

Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108325 Física
Para determinado modelo de equilíbrio termodinâmico, as trocas de calor devido à radiação solar absorvida e à radiação emitida pela Terra estão em equilíbrio térmico em cada instante de tempo. Nesse modelo, a potência de radiação emitida por unidade de área Re é dada pela Lei de Stefan-Boltzmann para corpos negros ideais, corrigida por uma emissividade ∈ < 1 (ressalte-se que, no caso de um corpo negro ideal, a emissividade é ∈ =  1). No sistema de unidades internacional (SI), Re = ∈σT4em que T é a temperatura da Terra, em Kelvin, σ = 5,6703 x 10-8 W / m2 . R2 e a emissividade depende das propriedades de absorção de ondas eletromagnéticas dos materiais que constituem a superfície e a atmosfera terrestre.

A potência de radiação solar absorvida por unidade de área Ri é a diferença entre a potência da radiação incidente Ra e a radiação refletida Rr (efeito albedo). A quantidade de radiação refletida dependerá naturalmente das propriedades de reflexão das ondas eletromagnéticas incidentes nos materiais que constituem a superfície e a atmosfera terrestre.

Se o Sol e a Terra forem considerados pontos materiais, é possível mostrar, utilizando-se as leis de Newton e a lei da gravitação universal, que o movimento da Terra em relação ao Sol é planar, descrito por elipses, tal que o Sol está em um de seus focos. Entretanto, o Sol e a Terra não são pontos, e sim objetos materiais ocupando certo volume, determinando um torque que faz o momento angular de rotação da Terra em torno de si mesma não ser conservado, o que implica uma cinemática complexa para o seu movimento. 

Em síntese, além do movimento de translação em torno do Sol, a Terra gira em torno de um eixo que liga os seus dois polos (eixo polar), o qual forma um ângulo β (ângulo de nutação) com o eixo-z perpendicular ao plano de movimento do sistema Sol-Terra, conforme figura a seguir. Por sua vez, o eixo polar gira em torno do eixo-z, em um movimento denominado precessão. Esses três movimentos — translação, nutação e precessão — determinam a configuração geométrica da Terra em relação ao Sol e, consequentemente, a quantidade de radiação solar incidente sobre as partes da Terra em cada instante de tempo. 


Com base no modelo de equilíbrio termodinâmico descrito no texto precedente e na figura apresentada, julgue o item.

Assinale a opção em que é representada a emissividade da Terra, na situação em que a sua temperatura seja de −17 ℃, quando considerada como um corpo negro ideal, e a sua temperatura de fato seja 34 ℃ maior que esse valor. Assuma que a temperatura do zero absoluto seja -273 K.

( 128 / 145 ) 4
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108324 Física
Para determinado modelo de equilíbrio termodinâmico, as trocas de calor devido à radiação solar absorvida e à radiação emitida pela Terra estão em equilíbrio térmico em cada instante de tempo. Nesse modelo, a potência de radiação emitida por unidade de área Re é dada pela Lei de Stefan-Boltzmann para corpos negros ideais, corrigida por uma emissividade ∈ < 1 (ressalte-se que, no caso de um corpo negro ideal, a emissividade é ∈ =  1). No sistema de unidades internacional (SI), Re = ∈σT4em que T é a temperatura da Terra, em Kelvin, σ = 5,6703 x 10-8 W / m2 . R2 e a emissividade depende das propriedades de absorção de ondas eletromagnéticas dos materiais que constituem a superfície e a atmosfera terrestre.

A potência de radiação solar absorvida por unidade de área Ri é a diferença entre a potência da radiação incidente Ra e a radiação refletida Rr (efeito albedo). A quantidade de radiação refletida dependerá naturalmente das propriedades de reflexão das ondas eletromagnéticas incidentes nos materiais que constituem a superfície e a atmosfera terrestre.

Se o Sol e a Terra forem considerados pontos materiais, é possível mostrar, utilizando-se as leis de Newton e a lei da gravitação universal, que o movimento da Terra em relação ao Sol é planar, descrito por elipses, tal que o Sol está em um de seus focos. Entretanto, o Sol e a Terra não são pontos, e sim objetos materiais ocupando certo volume, determinando um torque que faz o momento angular de rotação da Terra em torno de si mesma não ser conservado, o que implica uma cinemática complexa para o seu movimento. 

Em síntese, além do movimento de translação em torno do Sol, a Terra gira em torno de um eixo que liga os seus dois polos (eixo polar), o qual forma um ângulo β (ângulo de nutação) com o eixo-z perpendicular ao plano de movimento do sistema Sol-Terra, conforme figura a seguir. Por sua vez, o eixo polar gira em torno do eixo-z, em um movimento denominado precessão. Esses três movimentos — translação, nutação e precessão — determinam a configuração geométrica da Terra em relação ao Sol e, consequentemente, a quantidade de radiação solar incidente sobre as partes da Terra em cada instante de tempo. 


Com base no modelo de equilíbrio termodinâmico descrito no texto precedente e na figura apresentada, julgue o item.

Um aumento da cobertura de neve sobre a superfície terrestre deve implicar um aumento da radiação térmica emitida pela Terra.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108322 Física
Para determinado modelo de equilíbrio termodinâmico, as trocas de calor devido à radiação solar absorvida e à radiação emitida pela Terra estão em equilíbrio térmico em cada instante de tempo. Nesse modelo, a potência de radiação emitida por unidade de área Re é dada pela Lei de Stefan-Boltzmann para corpos negros ideais, corrigida por uma emissividade ∈ < 1 (ressalte-se que, no caso de um corpo negro ideal, a emissividade é ∈ =  1). No sistema de unidades internacional (SI), Re = ∈σT4em que T é a temperatura da Terra, em Kelvin, σ = 5,6703 x 10-8 W / m2 . R2 e a emissividade depende das propriedades de absorção de ondas eletromagnéticas dos materiais que constituem a superfície e a atmosfera terrestre.

A potência de radiação solar absorvida por unidade de área Ri é a diferença entre a potência da radiação incidente Ra e a radiação refletida Rr (efeito albedo). A quantidade de radiação refletida dependerá naturalmente das propriedades de reflexão das ondas eletromagnéticas incidentes nos materiais que constituem a superfície e a atmosfera terrestre.

Se o Sol e a Terra forem considerados pontos materiais, é possível mostrar, utilizando-se as leis de Newton e a lei da gravitação universal, que o movimento da Terra em relação ao Sol é planar, descrito por elipses, tal que o Sol está em um de seus focos. Entretanto, o Sol e a Terra não são pontos, e sim objetos materiais ocupando certo volume, determinando um torque que faz o momento angular de rotação da Terra em torno de si mesma não ser conservado, o que implica uma cinemática complexa para o seu movimento. 

Em síntese, além do movimento de translação em torno do Sol, a Terra gira em torno de um eixo que liga os seus dois polos (eixo polar), o qual forma um ângulo β (ângulo de nutação) com o eixo-z perpendicular ao plano de movimento do sistema Sol-Terra, conforme figura a seguir. Por sua vez, o eixo polar gira em torno do eixo-z, em um movimento denominado precessão. Esses três movimentos — translação, nutação e precessão — determinam a configuração geométrica da Terra em relação ao Sol e, consequentemente, a quantidade de radiação solar incidente sobre as partes da Terra em cada instante de tempo. 


Com base no modelo de equilíbrio termodinâmico descrito no texto precedente e na figura apresentada, julgue o item.
Se sobre a Terra incidisse sempre uma quantidade constante de radiação solar e se a sua emissividade fosse constante, então a temperatura de equilíbrio da Terra seria constante.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108317 Física
Para determinado modelo de equilíbrio termodinâmico, as trocas de calor devido à radiação solar absorvida e à radiação emitida pela Terra estão em equilíbrio térmico em cada instante de tempo. Nesse modelo, a potência de radiação emitida por unidade de área Re é dada pela Lei de Stefan-Boltzmann para corpos negros ideais, corrigida por uma emissividade ∈ < 1 (ressalte-se que, no caso de um corpo negro ideal, a emissividade é ∈ =  1). No sistema de unidades internacional (SI), Re = ∈σT4em que T é a temperatura da Terra, em Kelvin, σ = 5,6703 x 10-8 W / m2 . R2 e a emissividade depende das propriedades de absorção de ondas eletromagnéticas dos materiais que constituem a superfície e a atmosfera terrestre.

A potência de radiação solar absorvida por unidade de área Ri é a diferença entre a potência da radiação incidente Ra e a radiação refletida Rr (efeito albedo). A quantidade de radiação refletida dependerá naturalmente das propriedades de reflexão das ondas eletromagnéticas incidentes nos materiais que constituem a superfície e a atmosfera terrestre.

Se o Sol e a Terra forem considerados pontos materiais, é possível mostrar, utilizando-se as leis de Newton e a lei da gravitação universal, que o movimento da Terra em relação ao Sol é planar, descrito por elipses, tal que o Sol está em um de seus focos. Entretanto, o Sol e a Terra não são pontos, e sim objetos materiais ocupando certo volume, determinando um torque que faz o momento angular de rotação da Terra em torno de si mesma não ser conservado, o que implica uma cinemática complexa para o seu movimento. 

Em síntese, além do movimento de translação em torno do Sol, a Terra gira em torno de um eixo que liga os seus dois polos (eixo polar), o qual forma um ângulo β (ângulo de nutação) com o eixo-z perpendicular ao plano de movimento do sistema Sol-Terra, conforme figura a seguir. Por sua vez, o eixo polar gira em torno do eixo-z, em um movimento denominado precessão. Esses três movimentos — translação, nutação e precessão — determinam a configuração geométrica da Terra em relação ao Sol e, consequentemente, a quantidade de radiação solar incidente sobre as partes da Terra em cada instante de tempo. 


Com base no modelo de equilíbrio termodinâmico descrito no texto precedente e na figura apresentada, julgue o item.

Dado que o Sol emite, de forma isotrópica, sempre a mesma quantidade de radiação eletromagnética, infere-se que a potência de radiação incidente sobre a Terra será a mesma para todos os dias do ano.
Alternativas
Ano: 2023 Banca: CESPE / CEBRASPE Órgão: UNB Prova: CESPE / CEBRASPE - 2023 - UNB - Prova de Conhecimentos III - 2° dia |
Q3108316 Física
Para determinado modelo de equilíbrio termodinâmico, as trocas de calor devido à radiação solar absorvida e à radiação emitida pela Terra estão em equilíbrio térmico em cada instante de tempo. Nesse modelo, a potência de radiação emitida por unidade de área Re é dada pela Lei de Stefan-Boltzmann para corpos negros ideais, corrigida por uma emissividade ∈ < 1 (ressalte-se que, no caso de um corpo negro ideal, a emissividade é ∈ =  1). No sistema de unidades internacional (SI), Re = ∈σT4em que T é a temperatura da Terra, em Kelvin, σ = 5,6703 x 10-8 W / m2 . R2 e a emissividade depende das propriedades de absorção de ondas eletromagnéticas dos materiais que constituem a superfície e a atmosfera terrestre.

A potência de radiação solar absorvida por unidade de área Ri é a diferença entre a potência da radiação incidente Ra e a radiação refletida Rr (efeito albedo). A quantidade de radiação refletida dependerá naturalmente das propriedades de reflexão das ondas eletromagnéticas incidentes nos materiais que constituem a superfície e a atmosfera terrestre.

Se o Sol e a Terra forem considerados pontos materiais, é possível mostrar, utilizando-se as leis de Newton e a lei da gravitação universal, que o movimento da Terra em relação ao Sol é planar, descrito por elipses, tal que o Sol está em um de seus focos. Entretanto, o Sol e a Terra não são pontos, e sim objetos materiais ocupando certo volume, determinando um torque que faz o momento angular de rotação da Terra em torno de si mesma não ser conservado, o que implica uma cinemática complexa para o seu movimento. 

Em síntese, além do movimento de translação em torno do Sol, a Terra gira em torno de um eixo que liga os seus dois polos (eixo polar), o qual forma um ângulo β (ângulo de nutação) com o eixo-z perpendicular ao plano de movimento do sistema Sol-Terra, conforme figura a seguir. Por sua vez, o eixo polar gira em torno do eixo-z, em um movimento denominado precessão. Esses três movimentos — translação, nutação e precessão — determinam a configuração geométrica da Terra em relação ao Sol e, consequentemente, a quantidade de radiação solar incidente sobre as partes da Terra em cada instante de tempo. 


Com base no modelo de equilíbrio termodinâmico descrito no texto precedente e na figura apresentada, julgue o item.
A potência de radiação emitida pela Terra deve ser igual à potência de radiação absorvida por ela.
Alternativas
Q2092734 Física
A figura a seguir representa o diagrama pV de um 1 mol de um gás ideal, retratando diferentes processos termodinâmicos. 
32_.png (377×281)

Com base no diagrama, é correto afirmar que
Alternativas
Ano: 2021 Banca: CECIERJ Órgão: CEDERJ Prova: CECIERJ - 2021 - CEDERJ - Vestibular - Língua Inglesa - 2022.1 |
Q1859673 Física
Em uma etapa do ciclo executado por um gás ideal em um aparelho de ar-condicionado a pressão do gás é aumentada mantendo o seu volume constante. Nessa etapa do ciclo, o trabalho W realizado pelo gás, a quantidade de calor Q absorvida por ele e a variação ΔT da sua temperatura são, respectivamente: 
Alternativas
Q1857061 Física
O texto a seguir é referência para a questão.

Em todas as questões, as medições são feitas por um referencial inercial.
O módulo da aceleração gravitacional é representado por g. Onde for necessário, use g = 10 m/s2 para o módulo da aceleração gravitacional.
Uma certa massa de gás ideal passa pelo processo termodinâmico ilustrado na figura ao lado, que apresenta um diagrama P x V (pressão em função do volume).
Considerando que a temperatura do gás no ponto A vale TA = 50 K, assinale a alternativa que apresenta corretamente a temperatura TB do gás no ponto B. Imagem associada para resolução da questão
Alternativas
Ano: 2021 Banca: UECE-CEV Órgão: UECE Prova: UECE-CEV - 2021 - UECE - Prova de Conhecimentos Gerais |
Q1802306 Física
Em relação às propriedades dos gases, atente para as seguintes afirmações:
I. Para um gás ideal, a energia interna é função apenas da pressão. II. O calor absorvido por um gás ao variar seu estado independe do processo. III. A energia interna de um gás ideal é uma função apenas da temperatura e independe do processo. IV. Numa expansão isotérmica de um gás ideal, o trabalho realizado pelo mesmo é igual ao calor absorvido.
Está correto o que se afirma somente em
Alternativas
Ano: 2016 Banca: CEV-URCA Órgão: URCA Prova: CEV-URCA - 2016 - URCA - Prova 1: Física, Matemática, Química e História |
Q1790855 Física

De acordo com a primeira lei da termodinâmica se, durante um processo isotérmico sofrido por um gás ideal de massa fixa. o gás libera uma quantidade de calor cujo módulo é de 50cal então a variação de energia interna e o trabalho realizado pelo gás neste processo são, respectivamente:


Alternativas
Ano: 2017 Banca: CEV-URCA Órgão: URCA Prova: CEV-URCA - 2017 - URCA - PROVA I: Física, Matemática, Química e História |
Q1790731 Física

Os fenômenos macroscópicos são, a rigor, irreversíveis a menos de situações experimentalmente controladas “quase-reversíveis”. A expansão livre de um gás, por exemplo, é um fenômeno irreversível. Um outro exemplo é a passagem espontânea de calor de um corpo para outro de menor temperatura (ou mais frio). A lei física ligada a irreversibilidade dos fenômenos macroscópicos corresponde a:

Alternativas
Q1713603 Física
O Brasil ardeu em chamas em 2020. Muitas soluções foram propostas, incluindo o uso do “boi bombeiro”, porém nem todas eliminam de fato um dos três componentes que mantêm o fogo: calor, combustível e comburente. A figura a seguir representa três ações de bombeiros para extinguir o fogo.

Imagem associada para resolução da questão


Nas alternativas a seguir, o componente ausente no triângulo representa o componente eliminado pela ação dos bombeiros para a extinção do fogo. Assinale a alternativa que apresenta a correlação adequada entre as ações A, B e C e o componente eliminado do triângulo do fogo em cada ação, respectivamente.
Alternativas
Q1675950 Física
Suponha que um gás absorva uma quantidade de calor “Q” em uma transformação isovolumétrica. Sendo “T” o trabalho que ele realiza e “∆U” a variação de sua energia interna, podemos afirma que:
Alternativas
Ano: 2021 Banca: UPENET/IAUPE Órgão: UPE Prova: UPENET/IAUPE - 2021 - UPE - Vestibular - 2º Fase - 1º Dia |
Q1675843 Física
Na questão, considere o módulo da aceleração da gravidade g = 10,0 m/s2 , 1 kcal = 4,2 J, calor específico da água = 1 cal/g°C, calor latente de fusão da água LF = 80 cal/g, calor latente de vaporização da água Lv = 540 cal/g, índice de refração do ar nar = 1,0 e utilize π = 3 e a constante universal dos gases ideais R = 8,3 JK-1mol-1 .
A atmosfera da Terra pode ser considerada uma máquina térmica. A energia solar é absorvida, em média, a uma temperatura mais alta que a temperatura na qual a energia da radiação infravermelha é emitida de volta ao espaço. Portanto, de acordo com o conceito de motor térmico, existe energia mecânica disponível, que é utilizada para impulsionar a circulação da atmosfera e dos oceanos. A aplicação mais simples é que a luz do sol é absorvida na superfície onde a temperatura média é 288 K, e o infravermelho é emitido para o espaço a uma temperatura média de 255 K. Isso implica que a eficiência máxima do motor térmico da Terra é igual a 11,5%, sendo limitado puramente pela diferença de temperatura entre a superfície e a temperatura de equilíbrio radiativo. Essa diferença é resultado do efeito estufa. Portanto, nesse conceito simplista, quanto maior o efeito estufa mais energia mecânica que teoricamente estaria disponível. Como resultado, com o aquecimento global, a eficiência deve aumentar. Com um aquecimento de superfície de 4 °C, a eficiência aumentaria para X, o que significa que a circulação deve se tornar mais energética, com intensificação de fenômenos meteorológicos, a exemplo de tempestades severas, inundações, vendavais, ondas de calor, secas prolongadas, entre outros.
Disponível em: atmo.arizona.edu. Acesso em: 08 nov. 2020. (Adaptado)
Com base nas informações do texto e na eficiência de uma máquina térmica de Carnot, a nova eficiência da atmosfera terrestre X é aproximadamente igual a
Alternativas
Ano: 2019 Banca: UEMG Órgão: UEMG Prova: UEMG - 2019 - UEMG - Vestibular - EAD - Prova 07 |
Q1404891 Física

Sentados em volta de uma fogueira, assando mussarelas, duas amigas – Vega e Sirius – discutiam sobre a origem da energia irradiada pela combustão da madeira. Ao longo da conversa, as duas amigas fizeram as afirmativas abaixo. Classifique-as como verdadeiras (V) ou falsas (F).

Vega: A energia que está sendo liberada pela combustão foi obtida pela árvore por meio da luz solar.

Sirius: A energia que está armazenada nessa mussarela também é proveniente da luz solar.


A classificação correta é:

Alternativas
Ano: 2019 Banca: UEMG Órgão: UEMG Prova: UEMG - 2019 - UEMG - Vestibular - EAD - Prova 06 |
Q1404854 Física

O gráfico apresenta a participação de fontes renováveis (em cinza claro) e não-renováveis (em cinza escuro) na matriz energética brasileira de 1970 a 2005.


Imagem associada para resolução da questão


Os dados desse gráfico mostram que:

Alternativas
Ano: 2019 Banca: UEMG Órgão: UEMG Prova: UEMG - 2019 - UEMG - Vestibular - EAD - Prova 05 |
Q1404784 Física

“Ao longo do crescimento econômico, a humanidade fez uso, sobretudo de fontes de energia não renováveis. Os avanços nos processos tecnológicos industriais ocorreram, inicialmente, em países como a Inglaterra, onde a fonte de matéria-prima abundante para produção de energia era o ____________________. Foi esse combustível que moveu as primeiras máquinas a vapor e deu impulso à Revolução Industrial. Já no século XX, houve uma intensificação do uso do ___________________, sobretudo pelo fato de esse ser mais fácil de armazenar, transportar e usar. Seu potencial poluidor, no entanto, é também elevado.”

(CEMIG – Energia Eficiente Cidadania Inteligente – Bhte – 2005, p. 27-8. Adaptado).


Os combustíveis que completam, corretamente, essas lacunas são:

Alternativas
Respostas
1: E
2: E
3: E
4: C
5: E
6: E
7: E
8: C
9: A
10: B
11: C
12: B
13: E
14: B
15: D
16: C
17: C
18: A
19: D
20: B