Questões de Vestibular
Sobre cinemática em física
Foram encontradas 987 questões
Nos primeiros Jogos Olímpicos, as provas de natação eram realizadas em águas abertas, passando a ser disputadas em piscinas olímpicas em 1908.
Atualmente, os sensores instalados nas piscinas cronometram, com precisão, o tempo dos atletas em até centésimos de segundo.
Uma das disputas mais acirradas é a prova masculina de 50 m em estilo livre. Observe o tempo dos três medalhistas dessa prova nos Jogos de Londres em 2012.
Considerando a velocidade média dos atletas, quando o
vencedor completou a prova, a distância entre César Cielo
e o ponto de chegada era de, aproximadamente,
REINACH, Fernando. “Quando um prato de feijão vai mais longe”, in O Estado de São Paulo, 13/06/2015.
Uma pessoa caminhando, sem a traquitana, gasta 80 cal a cada metro. Utilizando o equipamento e reduzindo em 10% seu consumo de energia, essa pessoa percorreu uma distância D com velocidade média igual a 7,0 km/h e gastou energia correspondente a um prato de feijoada de 504 kcal.
Os valores da distância D e da potência P consumida na caminhada são, respectivamente,
1 cal = 4 J
A figura acima ilustra os caminhos S1, S2 e S3 para se
mover um objeto de massa m entre os pontos A e B, sob a ação
unicamente do campo gravitacional terrestre, que é considerado
uniforme. Os pontos A e B estão posicionados, respectivamente, nas
alturas hA e hB e h = hA - hB.
Tendo como referência a figura e as informações acima, julgue o próximo item.
Se WS1, WS2 e WS3 são os trabalhos realizados para se mover o
objeto nos caminhos S1, S2 e S3, respectivamente, então
WS3 > WS2 > WS1.
A figura acima ilustra os caminhos S1, S2 e S3 para se
mover um objeto de massa m entre os pontos A e B, sob a ação
unicamente do campo gravitacional terrestre, que é considerado
uniforme. Os pontos A e B estão posicionados, respectivamente, nas
alturas hA e hB e h = hA - hB.
Tendo como referência a figura e as informações acima, julgue o próximo item.
O trabalho realizado sob a ação de forças conservativas
corresponde à transformação de energia potencial em energia
cinética, ou vice-versa, dentro do próprio sistema.
As figuras I e II acima ilustram experimentos realizados
para, na superfície da Terra, estudar a queda livre de objetos no
vácuo (figura I) e na presença de ar (figura II). Os objetos são uma
pena e uma pedra, com massas m1 e m2, respectivamente, e m2 > m1.
Os objetos são soltos em queda livre, simultaneamente, e, quando
tocarem a superfície inferior do tubo (figura I), as velocidades finais
serão v1 e v2, respectivamente da pena e da pedra.
Tendo como referência as informações acima, julgue o próximo item.
No experimento II, os dois objetos sofrem a ação de uma força
que se opõe ao sentido da força gravitacional.
As figuras I e II acima ilustram experimentos realizados
para, na superfície da Terra, estudar a queda livre de objetos no
vácuo (figura I) e na presença de ar (figura II). Os objetos são uma
pena e uma pedra, com massas m1 e m2, respectivamente, e m2 > m1.
Os objetos são soltos em queda livre, simultaneamente, e, quando
tocarem a superfície inferior do tubo (figura I), as velocidades finais
serão v1 e v2, respectivamente da pena e da pedra.
Tendo como referência as informações acima, julgue o próximo item.
Comparando-se os tempos de queda livre da pena e da pedra
nos dois experimentos, verifica-se que os tempos em II serão
sempre inferiores aos tempos em I.
As figuras I e II acima ilustram experimentos realizados
para, na superfície da Terra, estudar a queda livre de objetos no
vácuo (figura I) e na presença de ar (figura II). Os objetos são uma
pena e uma pedra, com massas m1 e m2, respectivamente, e m2 > m1.
Os objetos são soltos em queda livre, simultaneamente, e, quando
tocarem a superfície inferior do tubo (figura I), as velocidades finais
serão v1 e v2, respectivamente da pena e da pedra.
Tendo como referência as informações acima, julgue o próximo item.
No experimento ilustrado na figura I, v2 > v1.
As figuras I e II acima ilustram experimentos realizados
para, na superfície da Terra, estudar a queda livre de objetos no
vácuo (figura I) e na presença de ar (figura II). Os objetos são uma
pena e uma pedra, com massas m1 e m2, respectivamente, e m2 > m1.
Os objetos são soltos em queda livre, simultaneamente, e, quando
tocarem a superfície inferior do tubo (figura I), as velocidades finais
serão v1 e v2, respectivamente da pena e da pedra.
Tendo como referência as informações acima, julgue o próximo item.
No experimento I, os trabalhos realizados sobre os dois objetos
no processo de queda livre são iguais.
As figuras I e II acima mostram, esquematicamente, para
uma bicicleta em movimento, a conexão entre as rodas dentadas
frontal (coroa) e traseira (catraca), de raios RF e RT, e velocidades
angulares ωF e ωT, respectivamente. As rodas dentadas estão
conectadas por uma corrente, que se move com velocidade linear v,
e RF = 4RT.
Tendo como referência essas informações, julgue o próximo item.
No caso da bicicleta mostrada na figura I, o momento angular
é um vetor paralelo ao eixo das rodas e perpendicular ao plano
do papel.

Antes da implantação das novas faixas, o tempo necessário para o pedestre ir do ponto A até o ponto C era de 90 segundos e distribuía-se do seguinte modo: 40 segundos para atravessar





Para chegar ao local do compromisso no novo horário, desprezando-se o tempo parado para atender a ligação, João deverá desenvolver, no restante do percurso, uma velocidade média, em km/h, no mínimo, igual a

Durante essa operação, o avião bombardeiro sobrevoou, horizontalmente e com velocidade vetorial constante, a região atacada, enquanto abandonava as bombas que, na fotografia tirada de outro avião em repouso em relação ao bombardeiro, aparecem alinhadas verticalmente sob ele, durante a queda. Desprezando a resistência do ar e a atuação de forças horizontais sobre as bombas, é correto afirmar que:
INSTRUÇÃO: Para responder à questão, analise a situação a seguir.
Duas esferas – A e B – de massas respectivamente iguais a 3 kg e 2 kg estão em movimento unidimensional sobre um plano horizontal perfeitamente liso, como mostra a figura 1.
Figura 1:
Inicialmente as esferas se movimentam em sentidos opostos, colidindo no instante t1 . A figura 2 representa a evolução das velocidades em função do tempo para essas esferas imediatamente antes e após a colisão mecânica.
Figura 2:
Sobre o sistema formado pelas esferas A e B, é correto
afirmar:
INSTRUÇÃO: Para responder à questão 1, analise o gráfico abaixo. Ele representa as posições x em função do tempo t de uma partícula que está em movimento, em relação a um referencial inercial, sobre uma trajetória retilínea. A aceleração medida para ela permanece constante durante todo o trecho do movimento.
Considerando o intervalo de tempo entre 0 e t2
, qual das
afirmações abaixo está correta?
Durante um jogo de futebol, um goleiro chuta uma bola fazendo um ângulo de 30o com relação ao solo horizontal. Durante a trajetória, a bola alcança uma altura máxima de 5,0 m. Considerando que o ar não interfere no movimento da bola, qual a velocidade que a bola adquiriu logo após sair do contato do pé do goleiro?
Use g = 10 m/s2 .
TEXTO 1
Queimada
À fúria da rubra língua
do fogo
na queimada
envolve e lambe
o campinzal
estiolado em focos
enos
sinal.
É um correr desesperado
de animais silvestres
o que vai, ali, pelo mundo
incendiado e fundo,
talvez,
como o canto da araponga
nos vãos da brisa!
Tambores na tempestade
[...]
E os tambores
e os tambores
e os tambores
soando na tempestade,
ao efêmero de sua eterna idade.
[...]
Onde?
Eu vos contemplo
à inércia do que me leva
ao movimento
de naufragar-me
eternamente
na secura de suas águas
mais à frente!
Ó tambores
ruflai
sacudi suas dores!
Eu
que não me sei
não me venho
por ser
busco apenas ser somenos
no viver,
nada mais que isso!
(VIEIRA, Delermando. Os tambores da tempestade. Goiânia: Poligráfica, 2010. p. 164, 544, 552.)
O fragmento do Texto 1 “à inércia do que me leva / ao movimento” faz uma menção figurada a movimento. Uma partícula se movimenta ao longo de uma linha reta, obedecendo à função horária S = 80 + 30t - 5t2 , com S dado em metros e t em segundos. Sobre esse fenômeno são feitas as seguintes afirmações:
I-No intervalo de 0 a 2 segundos, o movimento é retilíneo progressivo retardado.
II-No intervalo de 0 a 8 segundos, a distância percorrida e o módulo do deslocamento da partícula são iguais.
III-Após 3 segundos, a partícula descreve um movimento retilíneo retrógrado retardado.
IV-A velocidade da partícula no instante t = 10 segundos terá um módulo igual a 70 m/s.
Com base nas sentenças anteriores, marque a alternativa em que todos os itens estão corretos: