Questões de Vestibular
Comentadas sobre fundamentos da cinemática em física
Foram encontradas 40 questões

Considerem-se os seguintes dados:

Nessas condições, a diferença tT − tA, em segundos, corresponde a:

Considerando que as forças de atrito e de resistência do ar são desprezíveis, a velocidade
No gráfico, abaixo, estão representadas as posições, em função do tempo, de dois carros, A e B, que se deslocam em uma estrada retilínea.
A velocidade do carro A é
A figura a seguir apresenta um gráfico do movimento de um corpo.
A interpretação desse gráfico é:
Reabastecimento em voo, ou REVO, ou Reabastecimento aéreo é o processo de transferir combustível de uma aeronave (o tanque) para outra (o receptor) durante o voo, conforme mostra a figura. Isso permite ao receptor permanecer em voo mais tempo e, mais importante, estender sua autonomia e, portanto, a de suas armas e o alcance de sua missão. Uma série de reabastecimentos aéreos pode dar alcance limitado somente pelo cansaço da tripulação e fatores técnicos, como, por exemplo, consumo de óleo do motor.
Considerando-se que os aviões apresentam a mesma velocidade e de acordo com os conhecimentos sobre movimento referencial e repouso, é possível inferir que

Em um dado instante a plataforma se desloca da esquerda para a direita com aceleração constante, provocando alteração na configuração da água e nas posições das esferas. Assim, a alternativa CORRETA para o comportamento da água e das duas esferas, respectivamente é:
Laura e Alfredo vivem em cidades diferentes, distantes entre si 240 km, através de uma estrada retilínea. Eles decidem se encontrar em algum ponto da estrada. Laura sai de carro exatamente ao meio-dia e viaja a uma velocidade escalar constante de 80 km/h. Alfredo também sai ao meio-dia, a velocidade escalar de 100 km/h.
Desprezando os pequenos momentos de aceleração e desaceleração dos carros, determine a que horas eles se encontram.
A figura mostra uma pessoa de 1,6 m de altura parada sobre uma superfície horizontal a 10 m de distância de um muro vertical de 4 m de altura. Em determinado instante, essa pessoa começa a caminhar em uma trajetória retilínea, perpendicular ao muro, aproximando-se dele com uma velocidade constante de 0,5 m/s.
Sabendo que durante essa caminhada os raios solares projetam uma sombra do muro no solo de comprimento 7,0 m, o
intervalo de tempo necessário para que todo o corpo dessa
pessoa seja encoberto por essa sombra é de
↓ g = 10m/s2

O físico inglês Stephen Hawking (1942-2018), além de suas contribuições importantes para a cosmologia, a física teórica e sobre a origem do universo, nos últimos anos de sua vida passou a sugerir estratégias para salvar a raça humana de uma possível extinção, entre elas, a mudança para outro planeta. Em abril de 2018, uma empresa americana, em colaboração com a Nasa, lançou o satélite TESS, que analisará cerca de vinte mil planetas fora do sistema solar. Esses planetas orbitam estrelas situadas a menos de trezentos anos-luz da Terra, sendo que um anoluz é a distância que a luz percorre no vácuo em um ano.
Considere um ônibus espacial atual que viaja a uma velocidade média v = 2,0 x 104 km/s . O tempo que esse ônibus levaria para chegar a um planeta a uma distância de 100 anos-luz é igual a
(Dado: A velocidade da luz no vácuo é igual a c = 3,0 108 m/s .)
O gráfico representa a velocidade escalar de um nadador em função do tempo, durante um ciclo completo de braçadas em uma prova disputada no estilo nado de peito, em uma piscina.
(www.if.ufrj.br. Adaptado.)
Considerando que, em um trecho de comprimento 36 m, o nadador repetiu esse ciclo de braçadas e manteve o ritmo de seu nado constante, o número de braçadas completas dadas por ele foi em torno de

<https://tinyurl.com/y3cm4e8a> Acesso em: 17/05/2019. Original colorido.

I. Corpos celestes com mesma velocidade de escape retêm atmosferas igualmente densas, independentemente da temperatura de cada corpo. II. Moléculas de gás nitrogênio escapam da atmosfera de um corpo celeste mais facilmente do que moléculas de gás hidrogênio. III. Comparando corpos celestes com temperaturas médias iguais, aquele com a maior velocidade de escape tende a reter uma atmosfera mais densa.
Apenas é correto o que se afirma em
Note e adote:
Constante gravitacional: G ≡ 9 x 10−13 km3/(kg h2); Raio da Lua = 1.740 km; Massa da Lua ≡ 8 × 1022 kg; π ≡ 3.

Calcule, em J, a energia dissipada pelo atrito, enquanto o corpo se move entre essas duas posições.
