Questões de Vestibular
Sobre oscilação e ondas em física
Foram encontradas 654 questões
A característica ondulatória mencionada se deve ao fato de essa onda
Caso ocorra o problema de má vedação, mesmo com o forno vazio, ocorrerá o vazamento de
INSTRUÇÃO: Responder à questão com base no contexto a seguir.
Em hospitais de grande porte das principais cidades do país são realizados tratamentos que utilizam radioisótopos emissores de radiações alfa, beta e gama.
Em relação às radiações alfa, beta e gama, afirma-se:
I. Todas possuem massa de repouso.
II. Apenas duas possuem carga elétrica.
III. Em geral, a radiação gama é a que possui maior poder de penetração no corpo humano.
Está/Estão correta(s) apenas a(s) afirmativa(s)
Um pêndulo simples é composto por uma haste metálica leve, presa a um eixo bem lubrificado, e por uma esfera pequena de massa muito maior que a da haste, presa à sua extremidade oposta. O período P para pequenas oscilações de um pêndulo é proporcional à raiz quadrada da razão entre o comprimento da haste metálica e a aceleração da gravidade local. Considere este pêndulo nas três situações:
1. Em um laboratório localizado ao nível do mar, na Antártida, a uma temperatura de 0 °C.
2. No mesmo laboratório, mas agora a uma temperatura de 250 K.
3. Em um laboratório no qual a temperatura é de 32 °F, em uma base lunar, cuja aceleração da gravidade é igual a um sexto daquela da Terra.
Indique a alternativa correta a respeito da comparação entre os períodos de oscilação P1, P2 e P3 do pêndulo nas situações 1, 2 e 3, respectivamente.
A transmissão de dados de telefonia celular por meio de ondas eletromagnéticas está sujeita a perdas que aumentam com a distância d entre a antena transmissora e a antena receptora. Uma aproximação frequentemente usada para expressar a perda L , em decibéis (dB), do sinal em função de ݀d, no espaço livre de obstáculos, é dada pela expressão
em que λ é o comprimento de onda do sinal. O gráfico a seguir mostra L (em dB) versus ݀ (em metros) para um determinado comprimento de onda λ.
Com base no gráfico, a frequência do sinal é aproximadamente
Note e adote:
Velocidade da luz no vácuo: c = 3×108 m/s;
π = 3;
1 GHz = 109 Hz.
A figura representa uma onda harmônica transversal, que se propaga no sentido positivo do eixo x, em dois instantes de tempo: t = 3 s (linha cheia) e t = 7 s (linha tracejada)
Dentre as alternativas, a que pode corresponder à
velocidade de propagação dessa onda
Considere o caso abaixo e marque com V as proposições verdadeiras e com F as falsas.
Ao final do século 19, o Professor físico alemão, Wilhelm Conrad Röntgen, quando trabalhava em seu laboratório na Baviera, sul da Alemanha, estudando o tubo de raios catódicos, descobriu acidentalmente os raios X. Ciente da importância de sua descoberta, que ele chamou de raios X por não saber realmente do que se tratava, sendo X a incógnita da matemá-tica, Em dezembro de 1895 publicou o artigo o "EINE NEURE ART VON STRAHLEN" (sobre uma nova espécie de raios), onde descreve suas experiências e observações e relata várias proposições.
( ) Os raios X atravessam corpos opacos à luz.
( ) Provocam fluorescência em certos materiais.
( ) Não são defletidos por campos magnéticos.
( ) Os raios X propagam-se em linha reta.
( ) Os raios X propagam-se em uma única direção.
A sequência correta, de cima para baixo, é:
Sejam as seguintes afirmações:
I. Quanto maior a frequência de uma onda de luz no vácuo, maior a velocidade de propagação dessa onda.
II. Em uma corda com seus dois extremos fixos, ondas estacionárias somente poderão ser produzidas se o comprimento da corda for um múltiplo do comprimento de onda.
III. Ondas sonoras precisam de um meio material para se propagarem e são longitudinais no ar.
Marque a opção correta:
Quando necessário, adote:
• módulo da aceleração da gravidade: 10 m.s-2
• calor latente de vaporização da água: 540 cal.g-1
• calor específico da água: 1,0 cal.g-1. °C-1
• densidade da água: 1 g.cm-3
• constante universal dos gases ideais: R = 8,0 J.mol-1.K-1
• massa específica do ar: 1,225.10-3 g.cm-3
• massa específica da água do mar: 1,025 g.cm-3
• 1cal = 4,0 J
• Uma esfera de massa 1000g encontra-se em equilíbrio estático quando suspensa por uma mola ideal que está presa, por uma de suas extremidades, ao teto de um elevador que executa um movimento de ascensão com velocidade constante de módulo 2m.s-1. Quando o botão de emergência é acionado, o elevador para subitamente e, então, o sistema mola+esfera passa a oscilar em MHS com amplitude de 10cm. Determine, em unidades do SI, a constante elástica da mola. Despreze a resistência do ar durante a oscilação.
Adote: √20 = 4,5
Quando necessário, adote:
• módulo da aceleração da gravidade: 10 m.s-2
• calor latente de vaporização da água: 540 cal.g-1
• calor específico da água: 1,0 cal.g-1. °C-1
• densidade da água: 1 g.cm-3
• constante universal dos gases ideais: R = 8,0 J.mol-1.K-1
• massa específica do ar: 1,225.10-3 g.cm-3
• massa específica da água do mar: 1,025 g.cm-3
• 1cal = 4,0 J
• Duas fontes harmônicas simples produzem pulsos transversais em cada uma das extremidades de um fio de comprimento 125cm, homogêneo e de secção constante, de massa igual a 200g e que está tracionado com uma força de 64N. Uma das fontes produz seu pulso Δt segundos após o pulso produzido pela outra fonte. Considerando que o primeiro encontro desses pulsos se dá a 25cm de uma das extremidades dessa corda, determine, em milissegundos, o valor de Δt.
Quando necessário, adote:
• módulo da aceleração da gravidade: 10 m.s-2
• calor latente de vaporização da água: 540 cal.g-1
• calor específico da água: 1,0 cal.g-1. °C-1
• densidade da água: 1 g.cm-3
• constante universal dos gases ideais: R = 8,0 J.mol-1.K-1
• massa específica do ar: 1,225.10-3 g.cm-3
• massa específica da água do mar: 1,025 g.cm-3
• 1cal = 4,0 J
• Radiação cósmica de fundo em micro-ondas (CMB em inglês), predição da teoria do Big Bang, é uma forma de radiação eletromagnética que preenche todo o universo, cuja descoberta experimental se deve a Arno Penzias e Robert Wilson. Em qualquer posição do céu, o espectro da radiação de fundo é muito próximo ao de um corpo negro ideal, cujo espectro tem uma frequência de pico de 160 GHz. Considerando a CMB distribuída isotropicamente pelo Universo, com velocidade de propagação de 3x105 km.s-1, determine o número inteiro aproximado de ondas dessa radiação por centímetro linear do Universo.
Figura 2- Identificação das cordas do violão. Disponível em: http://www.violaopopular.com.br/cordas_e_maos.htm>. Acesso em: 08 set. 2017.
Analise as afirmativas a seguir:
I. Quando a 6ª corda é tocada presa, apenas por suas extremidades, o comprimento de onda é de 1,2m. II. Quando a corda tocada presa apenas por suas extremidades, o som produzido tem frequência aproximada de 83Hz. III. A frequência da onda sonora emitida é diferente da frequência de vibração da corda. IV. A intensidade do som emitido depende da força de tração aplicada nas extremidades da corda.
Com base nas afirmativas anteriores, marque a opção CORRETA.
Uma onda luminosa plana tem comprimento de onda igual a 6,0×10-7 m no vácuo. Considere as seguintes afirmações:
I - A frequência dessa onda luminosa é 5,0×1014 Hz.
II - A velocidade dessa onda é 1,8×108 m/s em um meio cujo índice de refração é igual a 5/3.
III - O comprimento dessa onda é 1,0×10-6 m em um meio cujo índice de refração é igual a 5/3.
Dado
Velocidade da luz no vácuo = 3,0×108 m/s
Marque a única opção CORRETA:
Para uma dada tensão , F, e um dado comprimento, L, a frequência de vibração, ʄ, de uma corda de densidade linear µ é determinada pela expressão
Levando em consideração as características descritas acima, para tocar uma determinada corda de violão visando produzir um som mais agudo, o violonista deverá
I. Em diferentes líquidos (água, óleo etc.), teremos velocidades de propagação diferentes, dado que a velocidade de propagação (v) da onda na superfície de um líquido depende do meio. II. O comprimento de onda (λ) independe do meio. III. A frequência (f) e o período (T) da onda são iguais à frequência e ao período da fonte que deu origem à onda. IV. As grandezas v, f e λ estão relacionadas pela equação λ = v/f e, portanto, como v, é constante para um dado meio, quanto maior for f, menor será o valor de λ nesse meio.
Está correto o que se afirma em
De acordo com o gráfico, é correto afirmar que: