Questões de Vestibular de Física
Foram encontradas 6.436 questões
Cinco resistores de mesma resistência R estão conectados à bateria ideal E de um automóvel,
conforme mostra o esquema:
Inicialmente, a bateria fornece ao circuito uma potência PI . Ao estabelecer um curto-circuito entre os pontos M e N, a potência fornecida é igual a PF.
A razão PF/ PI é dada por:
Temperatura
Pontos críticos ºC K fusão 0 273 ebulição 100 373
Considere que, no intervalo de temperatura entre os pontos críticos do gelo e da água, o mercúrio em um termômetro apresenta uma dilatação linear. Nesse termômetro, o valor na escala Celsius correspondente à temperatura de 313 K é igual a:
Observe a tabela abaixo, que apresenta as massas de alguns corpos em movimento uniforme.
CORPOS MASSA (kg) VELOCIDADE (km/h)
leopardo 120 60
automóvel 1100 70
caminhão 3 600 20
Admita que um cofre de massa igual a 300 kg cai, a partir do repouso e em queda livre de uma altura de 5 m.
Considere Q1 , Q2 , Q3 e Q4 , respectivamente, as quantidades de movimento do leopardo, do automóvel, do caminhão e do cofre ao atingir o solo.
As magnitudes dessas grandezas obedecem relação indicada em:
Considere os seguintes dados da tabela:
A relação R1/RV corresponde a:
A força magnética que atua em uma partícula elétrica é expressa pela seguinte fórmula:
F = q × v × B senθ
q – carga elétrica da partícula B – campo magnético
v – velocidade da partícula θ – ângulo entre a velocidade da partícula e o campo magnéticoAdmita quatro partículas elétricas idênticas, P1, P2, P3 e P4, penetrando com velocidades de mesmo módulo em um campo magnético uniforme conforme ilustra o esquema.
Nesse caso, a partícula em que a força magnética atua com maior intensidade é:
Três bolas − X, Y e Z − são lançadas da borda de uma mesa, com velocidades iniciais paralelas ao solo e mesma direção e sentido.
A tabela abaixo mostra as magnitudes das massas e das velocidades iniciais das bolas.
BOLAS MASSA (g) VELOCIDADE INICIAL (m/s)
X 5 20
Y 5 10
Z 10 8
Três bolas − X, Y e Z − são lançadas da borda de uma mesa, com velocidades iniciais paralelas ao solo e mesma direção e sentido.
A tabela abaixo mostra as magnitudes das massas e das velocidades iniciais das bolas.
BOLAS MASSA (g) VELOCIDADE INICIAL (m/s)
X 5 20
Y 5 10
Z 10 8
As curvas que descrevem as velocidades de reação de muitas enzimas em função das variações das concentrações de seus substratos seguem a equação de Michaelis. Tal equação é representada por uma hipérbole retangular cuja fórmula é:
v = velocidade de reação
Vmax = velocidade máxima de reação
Km = constante de Michaelis
[S] = concentração de substrato
A constante de Michaelis corresponde à concentração de substrato na qual v = Vmax /2 .
Considere um experimento em que uma enzima, cuja constante de Michaelis é igual a 9 x 10−3 milimol/L, foi incubada em condições ideais, com concentração de substrato igual a 10−3 milimol/L. A velocidade de reação medida correpondeu a 10 unidades. Em seguida, a concentração de substrato foi bastante elevada de modo a manter essa enzima completamente saturada.
Neste caso, a velocidade de reação medida será, nas mesmas unidades, equivalente a:
Suponha que cada eletroplaca se comporte como um gerador ideal. Suponha que o sistema elétrico de um poraquê, peixe elétrico de água doce, seja constituído de uma coluna com 5000 eletroplacas associadas em série, produzindo uma força eletromotriz total de 600 V.
(https://hypescience.com. Adaptado.)
Considere que uma raia-torpedo, que vive na água do mar, possua um sistema elétrico formado por uma associação em paralelo de várias colunas, cada uma com 750 eletroplacas iguais às do poraquê, ligadas em série, constituindo mais da metade da massa corporal desse peixe.
(www.megatimes.com.br. Adaptado.)
Desconsiderando perdas internas, se em uma descarga a raia-torpedo conseguir produzir uma corrente elétrica total de 50 A durante um curto intervalo de tempo, a potência elétrica gerada por ela, nesse intervalo de tempo, será de
A sensibilidade visual de humanos e animais encontra-se dentro de uma estreita faixa do espectro da radiação eletromagnética, com comprimentos de onda entre 380 nm e 760 nm. É notável que os vegetais também reajam à radiação dentro desse mesmo intervalo, incluindo a fotossíntese e o crescimento fototrópico. A razão para a importância dessa estreita faixa de radiação eletromagnética é o fato de a energia carregada por um fóton ser inversamente proporcional ao comprimento de onda. Assim, os comprimentos de onda mais longos não carregam energia suficiente em cada fóton para produzir um efeito fotoquímico apreciável, e os mais curtos carregam energia em quantidade que danifica os materiais orgânicos.
(Knut Schmidt-Nielsen. Fisiologia animal: adaptação e meio ambiente, 2002. Adaptado.)
A tabela apresenta o comprimento de onda de algumas cores do espectro da luz visível:
Sabendo que a energia carregada por um fóton de frequência f é dada por E = h × f, em que h = 6,6 × 10–34 J·s, que a velocidade da luz é aproximadamente c = 3 × 108 m/s e que 1 nm = 10–9 m, a cor da luz cujos fótons carregam uma quantidade de energia correspondente a 3,96 × 10–19 J é
Considerando que, nessa atividade, as dimensões das imagens nas fotografias deveriam ser 5000 vezes menores do que as dimensões reais na superfície da Terra e sabendo que as imagens dos objetos fotografados se formaram a 20 cm da lente da câmera, a altura h em que o balão se posicionou foi de
Para obter energia térmica, com a finalidade de fundir determinada massa de gelo, produziu-se a combustão de um mol de gás butano (C4H10), a 1 atm e a 25 ºC. A reação de combustão desse gás é:
C4H10 (g) +13/2 O2 (g)→ 4CO2 (g) + 5H2 O (l)
As entalpias-padrão de formação (ΔH) das substâncias citadas estão indicadas na tabela:
Considerando que a energia térmica proveniente dessa reação foi integralmente absorvida por um grande bloco de gelo
a 0 ºC e adotando 320 J/g para o calor latente de fusão do
gelo, a massa de água líquida obtida a 0 ºC, nesse processo,
pelo derretimento do gelo foi de, aproximadamente,
Nessa montanha-russa, um carrinho trafega pelo segmento horizontal A com velocidade constante de 4 m/s. Considerando g = 10 m/s2 ,√2 = 1,4 e desprezando o atrito e a resistência do ar, a velocidade desse carrinho quando ele passar pela posição de coordenada será
Para completar minha obra, restava uma última tarefa: encontrar a lei que relaciona a distância do planeta ao Sol ao tempo que ele leva para completar sua órbita.
Por fim, já quase sem esperanças, tentei T2/D3. E funcionou! Essa razão é igual para todos os planetas! No início, pensei que se tratava de um sonho. Essa é a lei que tanto procurei, a lei que liga cosmo e mente, que demonstra que toda a Criação provém de Deus. Minha busca está encerrada.
(Apud Marcelo Gleiser. A harmonia do mundo, 2006. Adaptado.)
A lei mencionada no texto refere-se ao trabalho de um importante pensador, que viveu
O gráfico representa a velocidade escalar de um nadador em função do tempo, durante um ciclo completo de braçadas em uma prova disputada no estilo nado de peito, em uma piscina.
(www.if.ufrj.br. Adaptado.)
Considerando que, em um trecho de comprimento 36 m, o nadador repetiu esse ciclo de braçadas e manteve o ritmo de seu nado constante, o número de braçadas completas dadas por ele foi em torno de