Questões de Vestibular Sobre física
Foram encontradas 6.436 questões
A figura acima ilustra a situação em que um homem exerce
uma força no fio para manter um corpo de 120 N em equilíbrio
estático, por meio de um sistema de roldanas. Os fios são
inextensíveis e têm massas desprezíveis. As polias são ideais, isto
é, não têm peso e não há atrito entre elas e os fios.
Tendo como referência essas informações, julgue o item.
Para que o corpo de 120 N se mantenha suspenso, em
equilíbrio estático, a força que o homem exerce no fio deve ser
superior a 30 N.
As figuras I e II acima mostram, esquematicamente, para
uma bicicleta em movimento, a conexão entre as rodas dentadas
frontal (coroa) e traseira (catraca), de raios RF e RT, e velocidades
angulares ωF e ωT, respectivamente. As rodas dentadas estão
conectadas por uma corrente, que se move com velocidade linear v,
e RF = 4RT.
Tendo como referência essas informações, julgue o próximo item.
A estabilidade da trajetória de um ciclista é função da
intensidade e da conservação do momento angular.
As figuras I e II acima mostram, esquematicamente, para
uma bicicleta em movimento, a conexão entre as rodas dentadas
frontal (coroa) e traseira (catraca), de raios RF e RT, e velocidades
angulares ωF e ωT, respectivamente. As rodas dentadas estão
conectadas por uma corrente, que se move com velocidade linear v,
e RF = 4RT.
Tendo como referência essas informações, julgue o próximo item.
Na situação ilustrada na figura II, ωF = 4ωT.
As figuras I e II acima mostram, esquematicamente, para
uma bicicleta em movimento, a conexão entre as rodas dentadas
frontal (coroa) e traseira (catraca), de raios RF e RT, e velocidades
angulares ωF e ωT, respectivamente. As rodas dentadas estão
conectadas por uma corrente, que se move com velocidade linear v,
e RF = 4RT.
Tendo como referência essas informações, julgue o próximo item.
No caso da bicicleta mostrada na figura I, o momento angular
é um vetor paralelo ao eixo das rodas e perpendicular ao plano
do papel.
Acima, mostra-se uma lâmpada ligada a uma pilha em três configurações distintas. Desprezando todas as perdas possíveis e considerando que todos os elementos sejam ideais, julgue o item que se segue.
Na configuração I, a lâmpada não acenderá porque não há um
circuito fechado que possibilite o fluxo de elétrons entre os
terminais da lâmpada.
Acima, mostra-se uma lâmpada ligada a uma pilha em três configurações distintas. Desprezando todas as perdas possíveis e considerando que todos os elementos sejam ideais, julgue o item que se segue.
No circuito fechado da configuração III, a lâmpada acenderá.
Acima, mostra-se uma lâmpada ligada a uma pilha em três configurações distintas. Desprezando todas as perdas possíveis e considerando que todos os elementos sejam ideais, julgue o item que se segue.
Na configuração II, existe um circuito fechado que liga um
terminal da pilha e os terminais da lâmpada, condição
necessária para o funcionamento da lâmpada.
Nos circuitos I e II acima, as pilhas são ligadas, de maneiras diferentes, a uma lâmpada, a um capacitor e a uma chave, a qual pode ser deslocada da posição Q para a posição P. Considerando que as pilhas sejam idênticas e todos os elementos dos circuitos sejam ideais, julgue o seguinte item.
Após o carregamento total dos capacitores, a carga elétrica
armazenada no capacitor do circuito II será igual ao dobro da
carga elétrica armazenada no capacitor do circuito I.
Nos circuitos I e II acima, as pilhas são ligadas, de maneiras diferentes, a uma lâmpada, a um capacitor e a uma chave, a qual pode ser deslocada da posição Q para a posição P. Considerando que as pilhas sejam idênticas e todos os elementos dos circuitos sejam ideais, julgue o seguinte item.
Nos dois circuitos, após o carregamento total dos capacitores,
se as chaves forem deslocadas da posição Q para a posição P,
as lâmpadas acenderão, e a do circuito I se apresentará com
mais brilho que a do circuito II.
Considerando que, nas configurações I e II acima, as pilhas e as lâmpadas são idênticas, que não há perdas e que todos os elementos são ideais, julgue o item a seguir.
A quantidade de lumens emitida na configuração I é superior
à que é emitida na configuração II.
Considerando que, nas configurações I e II acima, as pilhas e as lâmpadas são idênticas, que não há perdas e que todos os elementos são ideais, julgue o item a seguir.
A lâmpada da configuração I ficará acesa por mais tempo que
a lâmpada da configuração II.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
A cada hora de funcionamento, a quantidade de calor
produzida por 600 milhões de lâmpadas incandescentes é
superior a seis vezes a quantidade de calor produzida pela
mesma quantidade de lâmpadas de LED.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
Uma lâmpada de LED gasta um quarto da energia que gasta
uma lâmpada incandescente, para produzir a mesma
luminosidade.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
Uma lâmpada de potência igual a 60 W emite menos de
1018 fótons por segundo, se cada fóton tiver energia associada
de 6 × 10-19 J.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
A energia de um fóton ultravioleta com comprimento de onda
igual a 200 nm é inferior a 9 × 10-19 J.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
As transições eletrônicas a que o texto se refere são
indicadores de que, na lâmpada fluorescente, a luz é emitida de
forma quantizada.
Em 2013, uma das descobertas de maior importância do
ponto de vista tecnológico foi a criação de unidades fotovoltaicas
à base de perovskita, termo que designa um tipo de óxido com
fórmula geral ABO3, em que A e B representam cátions metálicos.
Um exemplo típico é o CaTiO3. A unidade básica do cristal de uma
perovskita consiste na estrutura cúbica mostrada na figura acima,
em que cada um de oito cátions “A” ocupa um dos vértices do cubo;
seis íons oxigênio estão nos centros das faces do cubo, formando
um octaedro regular; e um cátion “B” está no centro do cubo.
Considerando essas informações e que o número de Avogadro seja igual a 6,0 × 1023, julgue o item que é do tipo B.
Considere as seguintes informações: para aquecer água, utiliza-se uma unidade fotovoltaica com placa coletora de área 10,0 m2 ; a intensidade da radiação solar que atinge a placa é constante e igual a 1.000 W/m²; a placa converte 15,0% dessa energia em calor efetivamente empregado para aquecer a água. Considere, ainda, que o calor específico e a densidade da água, com temperaturas entre 20,0 ºC e 40,0 ºC, sejam 4,20 J × g-1 × K-1 e 1,00 g/mL, respectivamente. Com base nessas informações, calcule o tempo, em segundos, necessário para que a unidade fotovoltaica forneça calor suficiente para aquecer 50,0 L de água de 20,0 ºC a 40,0 ºC. Depois de efetuar todos os cálculos solicitados, divida o valor encontrado por 10 e despreze, para marcação no Caderno de Respostas, a parte fracionária do resultado final obtido, caso exista.
280.
Para aquecer a quantidade de massa m de uma substância, foram consumidas 1450 calorias. A variação de seu calor específico c, em função da temperatura θ, está indicada no gráfico.
O valor de m, em gramas, equivale a:
O gráfico abaixo indica a variação da aceleração a de um corpo, inicialmente em repouso, e da força F que atua sobre ele.
Quando a velocidade do corpo é de 10 m/s, sua quantidade de movimento, em kg × m/s,
corresponde a:
A produção e a transmissão do impulso nervoso nos neurônios têm origem no mecanismo da bomba de sódio-potássio. Esse mecanismo é responsável pelo transporte de íons Na+ para o meio extracelular e K+ para o interior da célula, gerando o sinal elétrico. A ilustração abaixo representa esse processo.
O impulso nervoso, ou potencial de ação, é uma consequência da alteração brusca e rápida da diferença de potencial transmembrana dos neurônios. Admita que a diferença de potencial corresponde a 0,07 V e a intensidade da corrente estabelecida, a 7,0 × 10−6 A.
A ordem de grandeza da resistência elétrica dos neurônios, em ohms, equivale a: