Questões de Vestibular
Sobre teoria quântica em física
Foram encontradas 56 questões
DADOS QUE PODEM SER USADOS NESTA PROVA
O espectro de emissão do hidrogênio apresenta uma série de linhas na região do ultravioleta, do visível e no infravermelho próximo, como ilustra a figura a seguir.
Niels Bohr, físico dinamarquês, sugeriu que o espectro de emissão do hidrogênio está relacionado às transições do elétron em determinadas camadas. Bohr calculou a energia das camadas da eletrosfera do átomo de hidrogênio, representadas no diagrama de energia a seguir. Além disso, associou as transições eletrônicas entre a camada dois e as camadas de maior energia às quatro linhas observadas na região do visível do espectro do hidrogênio.
Um aluno encontrou um resumo sobre o modelo atômico elaborado por Bohr e o espectro de emissão atômico do hidrogênio contendo algumas afirmações.
I. A emissão de um fóton de luz decorre da transição de um elétron de uma camada de maior energia para uma camada de menor energia.
II. As transições das camadas 2, 3, 4, 5 e 6 para a camada 1 correspondem às transições de maior energia e se encontram na região do infravermelho do espectro.
III. Se a transição 3→ 2 corresponde a uma emissão de cor vermelha, a transição 4→ 2 está associada a uma emissão violeta e a 5→ 2 está associada a uma emissão verde.
Pode-se afirmar que está(ão) correta(s)
I. A energia de um fóton é retamente proporcional à sua frequência.
II. A velocidade da luz, no vácuo, tem um valor finito, considerado constante para todos os referenciais inerciais.
III. No efeito fotoelétrico, há uma frequência mínima de corte, abaixo da qual o fenômeno não se verifca, qualquer que seja a intensidade da luz incidente.
IV. A fissão nuclear acontece quando núcleos de pequena massa colidem, originando um núcleo de massa maior.
Estão corretas apenas as afrmativas
Em relação aos postulados de Bohr, assinale a alternativa INCORRETA.
Note e adote:
O princípio da conservação da quantidade de movimento é válido também para a interação entre fótons e elétrons.
A carga do quark d é igual a -1/3 do módulo da carga do elétron, e a carga do quark s tem mesmo módulo e sinal contrário ao da carga de um antiquark s.
Ao quark s é atribuída uma propriedade denominada estranheza, a qual pode ser calculada pela seguinte fórmula:
S = 2Q - 1/3
S - estranheza
Q - razão entre a carga do quark s e o módulo da carga do elétron.
Assim, o valor da estranheza de um quark s é igual a:
Sabendo ainda que , onde c é a velocidade da luz no vácuo e , o comprimento de onda do fóton, é correto afirmar que
Com base nas informações, a experiência que revelou aumento da eficiência fotossintética em espécies de algas marinhas, devido a efeitos quânticos, foi realizada a uma temperatura, em °F, aproximadamente, igual a
Considerando-se a constante de Plank igual a 6,63.10-34 J.s, a função trabalho, energia mínima, em joule, para arrancar um elétron da placa de prata é igual a
A Figura 6 representa esquematicamente um aparato experimental que pode ser usado para produzir e verificar o efeito fotoelétrico. No interior do tubo de vidro transparente, onde há vácuo, encontram-se dois eletrodos metálicos A e B afastados um do outro. Esses eletrodos estão ligados entre si, externamente, através dos elementos representados, simbolicamente, como I e II.
Para que o efeito fotoelétrico seja detectado quando o eletrodo B for iluminado por luz ultravioleta, os elementos I e II devem ser, respectivamente:
I. É necessário que o nanomotor absorva 11 fótons para que ele, partindo do repouso, atinja a velocidade de 1,1 m/s.
II. A interação eletrostática entre os átomos constituintes do nanocarro e a superfície de ouro fica reduzida por causa da solução de tolueno, quando comparado ao vácuo.
III. Supondo que a força produzida pelo nanomotor seja constante, contínua e paralela ao deslocamento e que, absorvendo 2 fótons, o nanocarro se desloque 3,3 nanômetros, a força desenvolvida pelo nanomotor é de 2x10-26 N.
Assinale a alternativa CORRETA:
Um laser emite um pulso de luz monocromático com duração de 6,0 ns, com frequência de 4,0 x 1014 Hz e potência de 110 mW. O número de fótons contidos nesse pulso é
Dados: Constante de Planck: h = 6,6 x 10-34 J·s
1,0 ns = 1,0 x 10-9 s