Questões Militares de Engenharia Eletrônica
Foram encontradas 1.006 questões
Assinale a alternativa que apresenta o diagrama de blocos descrito a seguir.
“Caracteriza-se por uma estrutura que efetua um teste lógico no início de um looping, verificando se é permitido executar o trecho de instruções subordinado a esse looping”.
Informe se é falso (F) ou verdadeiro (V) o que se afirma sobre o diagrama de blocos abaixo. A seguir, indique a opção com a seqüência correta.
Considere:
C1 e C2 são condições.
I1, I2, I3 e I4 são instruções.
( ) I1 executa se C1 for falsa.
( ) I2 somente executa se C2 for verdadeira.
( ) Se C1 e C2 forem falsas a I3 executa.
( ) I4 sempre executa, independente de C1 e C2.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Em relação à organização de microcomputadores, informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a sequência correta.
( ) A arquitetura pipeline com n estágios oferece, no cenário mais favorável, um ganho de velocidade próximo a n vezes em relação à máquina convencional (sem pipeline).
( ) Na arquitetura pipeline, o problema de dependência de dados pode ser atenuado através do adiantamento de dados e do escalonamento das instruções.
( ) Na arquitetura superescalar, partes da estrutura da UCP (Unidade Central de Processamento) são replicados para permitir a execução de várias instruções ao mesmo tempo.
( ) Na arquitetura superescalar, o implementação do algoritmo de Tomasulo resolve os problemas das dependências de controle, dados e fluxo.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Sobre a organização e funcionamento básico de um microprocessador, informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a sequência correta.
( ) A ULA (Unidade Lógica e Aritmética e Lógica) é responsável por armazenar o ponteiro da instrução correntemente em execução.
( ) Os registradores da UCP (Unidade Central de Processamento) são uma área de memória que armazenam os dados relacionados aos programas em execução.
( ) O Program Counter (PC ou contador de instruções) mantém um registro de quantas instruções são executadas a cada ciclo de máquina.
( ) A pilha é uma região de memória que armazena as instruções que estão na fila de execução.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito colocado na figura a seguir, onde RL << Rt, e V é a tensão de alimentação senoidal. Assinale a alternativa correta.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
A coluna a esquerda contém alguns tipos de memórias semicondutoras. A coluna a direita contém algumas características destas memórias. Relacione a coluna a direita com a da esquerda e depois assinale a sequência correta de alternativas abaixo.
A. ROM
B. PROM
C. EPROM
D. EEPROM
E. RAM Estática
F. RAM Dinâmica
( ) volátil, conteúdo mantido se alimentação presente
( ) não volátil, apagada e programada eletricamente.
( ) não volátil, programada durante fabricação.
( ) não volátil, programada uma única vez pelo usuário.
( ) volátil, conteúdo precisa ser refrescado periodicamente.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito colocado na figura a seguir, com portas do tipo E (AND) indicadas pelo símbolo &, e portas do tipo OU (OR) indicadas pelo símbolo ≥1, . O circuito possui três entradas e duas saídas (S0 e S1). A operação realizada pelo circuito é
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito colocado na figura a seguir, com dois flip-flops, uma entrada CLK e duas saídas S0 e S1. Os flip-flops são do tipo JK e operam da seguinte maneira:
- com as entradas J e K distintas, o valor da entrada J é transferido à saída Q na borda de descida do relógio;
- com as entradas J e K iguais a 1, o valor da saída é invertido na borda de descida do relógio;
- com as entradas J e K iguais a 0, o valor da saída não se altera.
Quando um sinal de relógio é aplicado à entrada CLK, o resultado nas saídas S0 e S1 corresponde a
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere a expressão booleana abaixo, com 4 variáveis lógicas identificadas pelas letras A a D :
A simplificação desta expressão resulta em
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Sobre amplificadores de potência, informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a sequência correta.
( ) No amplificador classe A, as partes positiva e negativa do sinal são amplificadas por circuitos distintos.
( ) No amplificador classe C, um único circuito amplifica as partes positiva e negativa do sinal.
( ) O amplificador classe A é o mais eficiente e o classe C o menos eficiente.
( ) No amplificador classe D, o sinal de entrada deve ser convertido em um trem de pulsos.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito colocado na figura a seguir, onde os amplificadores operacionais são ideais. Se a tensão de entrada Vi é igual a 1,5 V, a tensão de saída Vo é
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Sobre o circuito com um amplificador operacional colocado na figura a seguir, pode-se afirmar que
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito amplificador de pequenos sinais que foi alterado pela adição de um resistor de emissor RE, conforme colocado na figura a seguir. Informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a sequência correta.
( ) A colocação do resistor de emissor melhora a estabilidade da polarização do circuito.
( ) A colocação do resistor de emissor diminui o ganho de tensão do circuito.
( ) A colocação do resistor de emissor aumenta a impedância de entrada do circuito.
( ) A colocação do resistor de emissor aumenta a impedância de saída do circuito.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Sobre transistores de junção bipolar, informe se é verdadeiro (V) ou falso (F) o que se afirma abaixo e depois assinale a alternativa que apresenta a sequência correta.
( ) A configuração em base comum pode fornecer um elevado ganho de corrente.
( ) A configuração em emissor comum pode fornecer um elevado ganho de tensão.
( ) A configuração em emissor comum pode fornecer um elevado ganho de corrente.
( ) A configuração em coletor comum pode fornecer um elevado ganho de corrente.
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito colocado na figura a seguir, onde a tensão de entrada VI = 10 ± 10% V, R = 40
Ω, a tensão zener é 8 V, e as correntes mínima e máxima pelo diodo para que ele opere na região
zener são 0 mA e 100 mA, respectivamente. A faixa de valores da corrente IL para que o diodo
mantenha-se na região zener é
DADOS:
Valores de tangente:
tan(0°) = 0, tan(30°) = (√3)/3, tan(45°) = 1, tan(60°) = √3, tan(90°) = ∞, tan(180°-α) = -tan(α), tan(-α) = -tan(α).
Valores de seno:
sen(0°) = 0, sen(30°) = 1/2, sen(45°) = (√2)/2, sen(60°) = (√3)/2, sen(90°) = 1, sen(90°-α) = cos(α), sen(180°-α) = sen(α), sen(-α) = -sen(α).
Valores de cosseno:
cos(0°) = 1, cos(30°) = (√3)/2, cos(45°) = (√2)/2, cos(60°) = 1/2, cos(90°) = 0, cos(90°-α ) = sen(α), cos(180°-α) = -cos(α), cos(-α) = cos(α).
Transformada de Laplace:
L{f(t)} = F(s), L{exp(-at)} = 1/(s+a), L{1 - exp(-at)} = a/(s(s+a)), L{cos(at)} = s/(s2 +a2 ), L{sen(at)} = a/(s2 +a2).
Resistividade aproximada dos condutores de cobre:
seção transversal de 1,5 mm2 = 10 Ω/km, seção transversal de 2,5 mm2 = 7 Ω/km,
seção transversal de 4 mm2 = 4 Ω/km, seção transversal de 6 mm2 = 3 Ω/km.
Representação de número complexo em forma polar: a∠b onde a é o módulo e b o argumento.
Representação do complemento do valor A: Ā
Considere o circuito colocado na figura a seguir, onde vi(t) = sen(ωt) V, VB = 0,6 V e os componentes são ideais. Assinale a forma de onda que corresponde à tensão de saída vo(t).