Questões Militares
Sobre eletricidade em física
Foram encontradas 706 questões
Determine a capacitäncia desse segundo arranjo em função da capacitância inicial Co (com vácuo entre as placas) e os dados a, d e k e marque a opção correta
Considerando o amperímetro ideal, o valor da corrente elétrica indicada no amperímetro é:
Do circuito 1 para o circuito 2, haverá variação na luminosidade em função do novo tipo de associação das lâmpadas.
O tipo de associação das lâmpadas no circuito 2 e a variação observada em sua luminosidade, em relação ao circuito 1, são, respectivamente:
Gabriel comprou um dispositivo eletrônico que constava em sua descrição a seguinte especificação: “5V – 10W”. Porém, para fazer a ligação desse dispositivo, ele contava apenas com uma bateria de 9,0 V e alguns pedaços de fios.
Como não contava com um resistor, Gabriel resolveu improvisar utilizando um pedaço de um condutor de ferro, cuja área da secção reta é de 1,0 mm2 e resistividade elétrica de 1,0 x 10–7 Ω.m.
(Considere os demais fios do circuito e a bateria ideais.)
Para que o dispositivo seja ligado segundo suas especificações, o condutor de ferro deverá ter
As propriedades elétricas de dois resistores A e B foram investigadas, e os dados obtidos para eles foram dispostos na forma de um gráfico V x i, em que V é a tensão aplicada e i é a corrente elétrica que por eles circula. As curvas para os resistores A (linha cheia) e B (linha tracejada) são apresentadas na figura ao lado.
Com base nos dados apresentados, considere as seguintes afirmativas:
1. O resistor B é ôhmico.
2. Os resistores têm resistências iguais quando submetidos a uma tensão de 10 V.
3. A potência dissipada pelo resistor A quando submetido a uma tensão de 20 V vale 0,6 W.
4. O resistor B apresenta uma resistência de 50 Ω quando submetido a uma tensão de 5 V.
Assinale a alternativa correta
Suponha que um capacitor de placas paralelas, com ar entre as placas, em princípio descarregado, seja carregado por uma bateria durante um certo tempo. Verifica-se (de algum modo) que os valores do potencial e da carga elétrica em uma das placas estão relacionados conforme mostra a figura abaixo. Em seguida, insere-se um dielétrico de constante dielétrica K=2 entre as placas do capacitor carregado.
Qual é a energia armazenada entre as placas do capacitor com o dielétrico?
Considere um hexágono regular, de lado r, com partículas carregadas mantidas fixas sobre seus vértices, conforme mostra a figura. Uma sétima carga q é posicionada a uma distância r/2 das cargas vizinhas. Qual deve ser o módulo da carga q, para que o campo elétrico no ponto P, no centro do hexágono, seja nulo?
Considere cos 60°=1/2.
Considere que duas esferas metálicas de raíos R1 e R2 (com R1 > R2) estão, em princípio, isoladas e no vácuo. Considere ainda que elas foram eletrizadas com cargas elétricas positivas e iguais. Num dado momento, elas são postas em contato e, logo em seguida, afastadas.
Pode-se afirmar, então, em relação às cargas Q1 e Q2 e potenciais V1 e V2 das esferas 1 e 2, respectivamente, que:
Nas questões de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65⋅10 –27 kg
• velocidade da luz no vácuo: c = 3⋅10 8 m/s
• constante de Planck: h = 6⋅10 –34 J⋅s
• 1 eV = 1,6⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = √1/2
• cos 45º = sen 45º = √2/2
No circuito abaixo, a bateria possui fem igual a ε e resistência interna r constante e a lâmpada incandescente L apresenta resistência elétrica ôhmica igual a 2r. O reostato R tem resistência elétrica variável entre os valores 2r e 4r.
Ao deslocar o cursor C do reostato de A até B, verifica-se
que o brilho de L
Nas questões de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65⋅10 –27 kg
• velocidade da luz no vácuo: c = 3⋅10 8 m/s
• constante de Planck: h = 6⋅10 –34 J⋅s
• 1 eV = 1,6⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = √1/2
• cos 45º = sen 45º = √2/2
Uma partícula eletrizada positivamente com uma carga igual a 5 µC é lançada com energia cinética de 3 J, no vácuo, de um ponto muito distante e em direção a uma outra partícula fixa com a mesma carga elétrica.
Considerando apenas interações elétricas entre estas duas partículas, o módulo máximo da força elétrica de interação entre elas é, em N, igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um circuito ôhmico com capacitância e autoindução desprezíveis. Através de uma superfície fixa delimitada por este circuito (Figura 1) aplica-se um campo magnético cuja intensidade varia no tempo t de acordo com o gráfico mostrado na Figura 2.
Nessas condições, a corrente induzida i no circuito
esquematizado na Figura 1, em função do tempo t, é
melhor representada pelo gráfico
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No circuito abaixo, a bateria possui fem igual a ε e resistência interna r constante e a lâmpada incandescente L apresenta resistência elétrica ôhmica igual a 2r. O reostato R tem resistência elétrica variável entre os valores 2r e 4r.
Ao deslocar o cursor C do reostato de A até B, verifica-se
que o brilho de L
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um circuito ôhmico com capacitância e auto-indução desprezíveis. Através de uma superfície fixa delimitada por este circuito (Figura 1) aplica-se um campo magnético cuja intensidade varia no tempo t de acordo com o gráfico mostrado na Figura 2.
Nessas condições, a corrente induzida i no circuito
esquematizado na Figura 1, em função do tempo t, é
melhor representada pelo gráfico
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
A figura abaixo ilustra dois resistores de imersão dentro de recipientes termicamente isolados e com capacidades térmicas desprezíveis, contendo as mesmas quantidades de água. Os resistores R1 e R2 estão ligados, respectivamente, a uma associação de geradores em série e em paralelo.
Os valores das resistências elétricas de R1 e R2 foram ajustados adequadamente de tal forma que cada associação de geradores transfere a máxima potência a cada um dos resistores.
Despreze a influência da temperatura na resistência elétrica e no calor específico da água e considere que todos os geradores apresentem a mesma fem e a mesma resistência interna.
Fecha-se simultaneamente as chaves Ch1 e Ch2 e, após
5 min, verifica-se que a variação de temperatura da água no
recipiente 1 foi de 20 ºC. Nesse mesmo intervalo, a água no
recipiente 2 apresenta uma variação de temperatura, em ºC,
igual a
Na associação de resistores abaixo, o circuito é submetido a uma diferença de potencial V, entre os pontos A e B, igual a:
Recentemente a legislação brasileira passou a determinar que os veículos trafeguem nas estradas com os faróis baixos acesos durante o dia ou uma outra lâmpada própria para isso, chamada luz diurna. Os carros geralmente possuem duas lâmpadas dos faróis baixos e duas lâmpadas dos faróis altos. Para obedecer a essa legislação, evitar que o usuário esqueça de acender os faróis e para preservar o uso das lâmpadas de farol baixo sem a necessidade da inclusão de lâmpadas extras, um determinado fabricante de automóveis optou pela seguinte solução descrita a seguir. Os carros dessa marca possuem as lâmpadas de farol alto com dois modos diferentes de associação elétrica. No primeiro modo, chamado “farol alto”, as lâmpadas são ligadas em paralelo entre si e à bateria do carro (12 V). As lâmpadas são iguais e dissipam a potência de 60W cada uma. Esse modo está representado na figura I a seguir. No segundo modo, um sistema automatizado foi feito de tal forma que ao ligar o carro, se os faróis estiverem desligados, esse sistema associa as duas lâmpadas de farol alto em série e essa associação é chamada de “modo luz diurna”, representado pela figura II a seguir.
No modo luz diurna, as lâmpadas acendem com um brilho menos intenso, porém o suficiente para obedecer à legislação e não atingem a temperatura do modo farol alto. Sabe-se que a resistência elétrica das lâmpadas é dada pelo filamento de tungstênio e o mesmo apresenta um aumento do valor da resistência elétrica em função da temperatura atingida. Nesse caso, considere que a resistência elétrica de cada lâmpada no modo luz diurna é igual a 75% da resistência elétrica de cada lâmpada no modo farol alto.
Considere as lâmpadas como resistores ôhmicos ao atingir cada
patamar de temperatura, ou seja, em cada uma das condições
descritas no enunciado. E com base nisso assinale a alternativa que
indica corretamente o valor de potência elétrica dissipada, em W,
em cada lâmpada quando estiver no modo luz diurna.
Determine o valor em µF da capacitância equivalente entre os pontos a e b da associação de capacitores abaixo:
Obs.: C = 30µF
O circuito a seguir é composto por uma fonte de tensão ideal, um resistor ôhmico de 5 kΩ, e um resistor ôhmico variável.
No circuito apresentado, no resistor variável, o valor da resistência elétrica entre o cursor (ponto C) e o ponto B é 1/3 do valor da resistência elétrica entre o cursor e o ponto A. E a resistência elétrica entre os pontos A e B é de 10 kΩ.
Um estudante pensou em medir o valor da diferença de potencial entre os pontos 1 e 2 do circuito. Porém, ao medir, ao invés de utilizar um voltímetro, equivocadamente usou um amperímetro, considerado ideal.
Assinale a alternativa que apresenta o valor indicado pelo
amperímetro, em miliampères.