Questões Militares
Sobre ondas e propriedades ondulatórias em física
Foram encontradas 228 questões
Uma onda sonora e uma onda luminosa atingem ao mesmo tempo e perpendicularmente a superfície de um corpo d’água. Analise as afirmativas a seguir e assinale a alternativa correta.
I. Ambas perderão velocidade ao entrar na água.
II. Nenhuma sofrerá desvio devido à refração, pois ambas entraram perpendicularmente.
III. O índice de refração da água é igual para ambos os tipos de onda.
Estão corretas as afirmativas:
Os espetáculos produzidos por fogos de artifício são resultados de diversas reações químicas. Nos primórdios, as cores desses artefatos estavam limitadas ao dourado e ao prateado por serem estas resultantes da mistura de carvão e limalha de ferro. Em 1786, com a descoberta do clorato de potássio KCℓO3 pelo químico francês Claude Louis Berthollet e, com a disponibilidade dos elementos magnésio e alumínio, o universo de cores dos fogos de artifício ganhou matizes, luminosidade e brilho.
In: Ciência Hoje, v. 48, n.º 288, 2011, p. 27-8 (com adaptações).
Uma corda ideal está atada a um diapasão que vibra com frequência f1 e presa a um corpo de massa m = 2,5 kg, conforme a figura 1. A onda estacionária que se forma possui 6 ventres que formam 3,0 m de comprimento.
Um diapasão de frequência f2 é posto a vibrar na borda de um tubo com água, conforme a figura 2.
O nível da água vai diminuindo e, na altura de 42,5 cm, ocorre o primeiro aumento da intensidade sonora. Desprezando os atritos e considerando a roldana ideal, a razão entre as frequências f2 e f1 é de aproximadamente:
Dado: densidade linear da corda = 250 g/m.
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Uma jovem encontra-se no assento de um carrossel circular que gira a uma velocidade angular constante com período T. Uma sirene posicionada fora do carrossel emite um som de frequência fo em direção ao centro de rotação. No instante t = 0, a jovem está à menor distância em relação à sirene. Nesta situação, assinale a melhor representação da frequência f ouvida pela jovem.
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Considere o modelo de flauta simplificado mostrado na figura, aberta na sua extremidade D, dispondo de uma abertura em A (próxima à boca), um orifício em B e outro em C. Sendo = 34,00 cm, e a velocidade do som de 340,0 m/s, as frequências esperadas nos casos: (i) somente o orifício C está fechado, e (ii) os orif´ıcios B e C estão fechados, devem ser, respectivamente
Uma partícula emite um som de frequência constante e se desloca no plano XY de acordo com as seguintes equações de posição em função do tempo t:
x = a cos(wt)
y = b sen(wt)
onde:
a, b e w são constantes positivas, com a > b.
Sejam as afirmativas:
I) o som na origem é percebido com a mesma frequência quando a partícula passa pelas coordenadas (a,0) e (0,b).
II) o raio de curvatura máximo da trajetória ocorre quando a partícula passa pelos pontos (0,b) e (0,-b).
III) a velocidade máxima da partícula ocorre com a passagem da mesma pelo eixo Y.
A(s) afirmativa(s) correta(s) é(são):
As figuras abaixo representam ondas sonoras emitidas por 3 dispositivos diferentes.
A qualidade do som que permite ao ouvinte identificar a
diferença entre os sons gerados pelos dispositivos é
Calcule o comprimento de onda, das ondas eletromagnéticas emitidas por uma emissora de rádio, as quais apresentam uma freqüência de 30 MHz.
Considere a velocidade de propagação como sendo igual a da luz no vácuo, ou seja 300.000 km/s.
Uma buzina B localizada na proa de um barco, 1 m acima da superfície da água, é ouvida simultaneamente por uma pessoa P na margem, a 20 m de distância, e por um mergulhador M, posicionado diretamente abaixo da buzina. A profundidade do mergulhador, em metros, é
Dados:
• Temperatura do ar e da água: 20°C;
• Razão entre as massas molares da água e do ar: 0,04.
Uma onda plana de frequência f propaga-se com velocidade v horizontalmente para a direita. Um
observador em A desloca-se com velocidade constante u (u < v) no sentido indicado na figura acima.
Sabendo que α é o ângulo entre a direção de propagação da onda e de deslocamento do observador,
a frequência medida por ele é:
Um transmissor de Radar emite no ar ondas eletromagnéticas na faixa de microondas. Sabendo-se que a frequência do transmissor é de 2,0 GHz, qual o comprimento de onda, em cm, das ondas transmitidas? Considere:
1- O meio homogêneo,
2- a velocidade de propagação das ondas eletromagnéticas no ar igual a 300.000 km/s e
3- o prefixo G = 109 .
Qual o comprimento de onda, em metros, de um sinal de rádio-freqüência (RF) de 150 MHz?
Considere:
• a velocidade de propagação das ondas de rádio no ar igual a 300.000 km/s.
• 1MHz=106 Hz.