Questões Militares de Física
Foram encontradas 1.511 questões
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um observador O visualiza uma placa com a inscrição AFA através de um periscópio rudimentar construído com dois espelhos planos E1 e E2 paralelos e inclinados de 45º em relação ao eixo de um tubo opaco, conforme figura abaixo.
Nessas condições, a opção que melhor representa,
respectivamente, a imagem da palavra AFA conjugada pelo
espelho E1 e a imagem final que o observador O visualiza através do espelho E2 é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere uma barra homogênea, retilínea e horizontal fixa em uma de suas extremidades pelo ponto O, e submetida à ação de uma força na outra extremidade, no ponto P, conforme mostra a Figura 1.
A distância entre os pontos O e P vale x, e a ação da força gera um torque M1 na barra, em relação ao ponto de fixação.
Dobrando-se a barra, de acordo com a Figura 2, e aplicando-se novamente a mesma força no ponto P, um novo torque M2 é gerado em relação ao ponto O.
Considere que a barra não possa ser deformada por ação da força .
Nestas condições, a razão M1 /M2 entre os torques gerados
pela força , nas duas configurações apresentadas, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Duas partículas idênticas, A e B, se movimentam ao longo de uma mesma trajetória x, sendo suas posições, em função do tempo, dadas por xA = 2t e xB = 4 + t, respectivamente, com x em metros e t em segundos. Em determinado instante, as partículas, que formam um sistema isolado, sofrem uma colisão parcialmente elástica, com coeficiente de restituição e = 0,5.
Nessas condições e desprezando o deslocamento dessas partículas durante a colisão, quando a partícula A estiver na posição 28 m, a partícula B estará na posição, em m,
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
A partir do instante t0 = 0, uma partícula com velocidade inicial v0 é uniformemente acelerada.
No instante t, a aceleração cessa e a partícula passa a se movimentar com velocidade constante v. Do instante 2t ao instante 4t, uma nova aceleração constante atua sobre a partícula, de tal forma que, ao final desse intervalo, sua velocidade vale -v.
Nessas condições, a velocidade média da partícula, no intervalo de 0 a 4t, é igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No interior do Sol, reações nucleares transformam quantidades enormes de núcleos de átomos de hidrogênio (H), que se combinam e produzem núcleos de átomos de hélio (He), liberando energia.
A cada segundo ocorrem 1038 reações de fusão onde quatro átomos de hidrogênio se fundem para formar um átomo de hélio, conforme esquematizado abaixo:
4H → He + Energia.
A energia liberada pelo Sol, a cada segundo, seria capaz de
manter acesas um certo número de lâmpadas de 100 W.
Nessas condições, a ordem de grandeza desse número de
lâmpadas é igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um circuito ôhmico com capacitância e auto-indução desprezíveis. Através de uma superfície fixa delimitada por este circuito (Figura 1) aplica-se um campo magnético cuja intensidade varia no tempo t de acordo com o gráfico mostrado na Figura 2.
Nessas condições, a corrente induzida i no circuito
esquematizado na Figura 1, em função do tempo t, é
melhor representada pelo gráfico
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
A figura abaixo ilustra dois resistores de imersão dentro de recipientes termicamente isolados e com capacidades térmicas desprezíveis, contendo as mesmas quantidades de água. Os resistores R1 e R2 estão ligados, respectivamente, a uma associação de geradores em série e em paralelo.
Os valores das resistências elétricas de R1 e R2 foram ajustados adequadamente de tal forma que cada associação de geradores transfere a máxima potência a cada um dos resistores.
Despreze a influência da temperatura na resistência elétrica e no calor específico da água e considere que todos os geradores apresentem a mesma fem e a mesma resistência interna.
Fecha-se simultaneamente as chaves Ch1 e Ch2 e, após
5 min, verifica-se que a variação de temperatura da água no
recipiente 1 foi de 20 ºC. Nesse mesmo intervalo, a água no
recipiente 2 apresenta uma variação de temperatura, em ºC,
igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um observador O visualiza uma placa com a inscrição AFA através de um periscópio rudimentar construído com dois espelhos planos E1 e E2 paralelos e inclinados de 45º em 2 relação ao eixo de um tubo opaco, conforme figura abaixo.
Nessas condições, a opção que melhor representa,
respectivamente, a imagem da palavra AFA conjugada pelo
espelho E e a imagem final que o observador O visualiza E1
através do espelho E2 é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere uma dada massa gasosa de um gás perfeito que pode ser submetida a três transformações cíclicas diferentes I, II e III, como mostram os respectivos diagramas abaixo.
O gás realiza trabalhos totais respectivamente nas transformações I, II e III.
Nessas condições, é correto afirmar que
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um sistema massa-mola é composto de uma mola ideal de constante elástica k e de um recipiente, de volume interno V e massa desprezível, que é totalmente preenchido com um líquido homogêneo X de densidade constante e desconhecida.
Verifica-se que, ao se colocar esse primeiro sistema para oscilar, seu período de oscilação se iguala ao período de oscilação de um segundo sistema, formado de um pêndulo simples de comprimento L e massa m.
Considere que os dois sistemas oscilam em movimento harmônico simples em um local em que a aceleração gravitacional vale g; e que o recipiente preenchido pelo líquido comporte-se como uma massa pontual.
Nessas condições, a densidade do líquido X pode ser expressa por
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
O sistema ilustrado na figura abaixo é composto de três blocos, A, B e C, de dimensões desprezíveis e de mesma massa, duas roldanas e dois fios, todos ideais.
Quando o sistema é abandonado, a partir da configuração indicada na figura, o bloco A passa, então, a deslizar sobre o plano horizontal da mesa, enquanto os blocos B e C descem na vertical e a tração estabelecida no fio que liga os blocos A e B vale TB.
Em determinado instante, o bloco C se apoia sobre uma cadeira, enquanto B continua descendo e puxando A, agora através de uma tração . T'B
Desprezando quaisquer resistências durante o movimento
dos blocos, pode-se afirmar que a razão T'B /TB vale
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Uma partícula de massa M é lançada obliquamente com sua velocidade inicial fazendo um ângulo de 30º com a direção horizontal, conforme indica figura a seguir.
Ao atingir a altura máxima de sua trajetória parabólica, essa partícula colide inelasticamente com um bloco de massa 5M. Esse bloco, de dimensões desprezíveis, está preso ao teto por um fio ideal, de comprimento 1,2 m, formando um pêndulo balístico. Inicialmente o fio do pêndulo está na vertical. Após a colisão, o pêndulo atinge uma altura máxima, na qual o fio tem uma inclinação de 30º em relação à direção horizontal.
Desprezando a resistência do ar, o módulo da velocidade
inicial da partícula, v0, em m/s, é igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Numa partida de vôlei, certo atleta dá um mergulho na quadra, a uma distância x = 2,5 m da rede, defendendo um ataque adversário, conforme figura a seguir.
Após essa defesa, considere que a bola é lançada de uma altura desprezível em relação ao chão, de forma que sua velocidade faz um ângulo de 45º com a direção horizontal. Ao longo de sua trajetória, essa bola toca a fita da rede caindo, posteriormente, do outro lado da quadra. Imediatamente antes e imediatamente após tocar a fita, a velocidade da bola tem direção horizontal. A distância x' , onde a bola cai na quadra, é igual à metade da altura h da fita.
Despreze a resistência do ar e considere a bola uma
partícula de massa 200 g, cujo movimento se dá no plano
da figura. O módulo do impulso, aplicado pela fita sobre a
bola, em N⋅s, vale
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10–27 kg
• massa atômica do hélio: mHe = 6,65⋅10–27 kg
• velocidade da luz no vácuo: c = 3⋅108 m/s
• constante de Planck: h = 6⋅10–34 J⋅s
• 1 eV = 1,6⋅10–19 J
• constante eletrostática do vácuo: k0 = 9,0⋅109 N⋅m2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
A partir do instante t0 = 0, uma partícula com velocidade inicial v0 é uniformemente acelerada.
No instante t, a aceleração cessa e a partícula passa a se movimentar com velocidade constante v. Do instante 2t ao instante 4t, uma nova aceleração constante atua sobre a partícula, de tal forma que, ao final desse intervalo, sua velocidade vale -v.
Nessas condições, a velocidade média da partícula, no intervalo de 0 a 4t, é igual a
Na figura dada, o bloco A está em repouso sob a ação da força horizontal F1 de módulo igual a 12N, e da força de atrito entre o bloco e a superfície.
Caso uma outra força F2 = 3N, horizontal e contrária ao sentido de F1 seja aplicada no bloco, então, a força resultante no mesmo será:
A figura abaixo representa uma onda estacionária que se forma em um tubo sonoro fechado. Considere a velocidade do som no ar igual a 340m/s.
Assinale a alternativa que representa a frequência do som emitido pelo tubo.
Na associação de resistores abaixo, o circuito é submetido a uma diferença de potencial V, entre os pontos A e B, igual a:
Recentemente a legislação brasileira passou a determinar que os veículos trafeguem nas estradas com os faróis baixos acesos durante o dia ou uma outra lâmpada própria para isso, chamada luz diurna. Os carros geralmente possuem duas lâmpadas dos faróis baixos e duas lâmpadas dos faróis altos. Para obedecer a essa legislação, evitar que o usuário esqueça de acender os faróis e para preservar o uso das lâmpadas de farol baixo sem a necessidade da inclusão de lâmpadas extras, um determinado fabricante de automóveis optou pela seguinte solução descrita a seguir. Os carros dessa marca possuem as lâmpadas de farol alto com dois modos diferentes de associação elétrica. No primeiro modo, chamado “farol alto”, as lâmpadas são ligadas em paralelo entre si e à bateria do carro (12 V). As lâmpadas são iguais e dissipam a potência de 60W cada uma. Esse modo está representado na figura I a seguir. No segundo modo, um sistema automatizado foi feito de tal forma que ao ligar o carro, se os faróis estiverem desligados, esse sistema associa as duas lâmpadas de farol alto em série e essa associação é chamada de “modo luz diurna”, representado pela figura II a seguir.
No modo luz diurna, as lâmpadas acendem com um brilho menos intenso, porém o suficiente para obedecer à legislação e não atingem a temperatura do modo farol alto. Sabe-se que a resistência elétrica das lâmpadas é dada pelo filamento de tungstênio e o mesmo apresenta um aumento do valor da resistência elétrica em função da temperatura atingida. Nesse caso, considere que a resistência elétrica de cada lâmpada no modo luz diurna é igual a 75% da resistência elétrica de cada lâmpada no modo farol alto.
Considere as lâmpadas como resistores ôhmicos ao atingir cada
patamar de temperatura, ou seja, em cada uma das condições
descritas no enunciado. E com base nisso assinale a alternativa que
indica corretamente o valor de potência elétrica dissipada, em W,
em cada lâmpada quando estiver no modo luz diurna.
No sistema mostrado na figura a seguir, a polia e o fio são ideais (massas desprezíveis e o fio inextensível) e não deve ser considerado nenhuma forma de atrito. Sabendo-se que os corpos A e B têm massa respectivamente iguais a 4 kg e 2 kg e que o corpo A desce verticalmente a uma aceleração constante de 5 m/s2 , qual o valor do ângulo θ, que o plano inclinado forma com a horizontal?
Adote o módulo da aceleração da gravidade igual a 10 m/s2 .
Determine o valor em µF da capacitância equivalente entre os pontos a e b da associação de capacitores abaixo:
Obs.: C = 30µF