Questões de Concurso Militar AFA 2017 para Aspirante da Aeronáutica (Intendente)

Foram encontradas 64 questões

Q829249 Inglês
In the sentence “land degradation due to increased human activities has impacted negatively on agricultural production” (lines 45 to 47) it is INCORRECT to state that
Alternativas
Q829250 Inglês
In “poverty situation in developing nations have reduced their capacity to produce food, as most farmers cannot afford seed and fertilizers” (lines 53 to 55), the underlined word means
Alternativas
Q829251 Inglês
The sentence “recent global financial crisis have led to increase in food prices and reduced investments in agriculture” (lines 58 to 60) states that
Alternativas
Q829252 Inglês
Starvation, malnutrition, increased mortality and political unrest are mentioned in the text as examples of
Alternativas
Q829253 Inglês
The scarcity of food may lead to long term effects such as
Alternativas
Q829254 Inglês
Investing in clean energy is considered
Alternativas
Q829255 Inglês
The personal pronoun “they” (line 91) refers to
Alternativas
Q829256 Inglês
The text conclusion seems to be
Alternativas
Q829257 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

O gráfico seguinte representa a velocidade escalar v de uma partícula em movimento retilíneo. 
                                 Imagem associada para resolução da questão
Considerando que, em t = 0, a partícula está na origem dos espaços (S0 =0) , o gráfico que melhor representa a posição (S) dessa partícula até o instante t = 5 s é 
Alternativas
Q829258 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Uma partícula é abandonada sobre um plano inclinado, a partir do repouso no ponto A, de altura h, como indicado pela figura (fora de escala). Após descer o plano inclinado, a partícula se move horizontalmente até atingir o ponto B. As forças de resistência ao movimento de A até B são desprezíveis. A partir do ponto B, a partícula então cai, livre da ação de resistência do ar, em um poço de profundidade igual a 3h e diâmetro x. Ela colide com o chão do fundo do poço e sobe, em uma nova trajetória parabólica até atingir o ponto C, o mais alto dessa nova trajetória.

Na colisão com o fundo do poço a partícula perde 50% de sua energia mecânica. Finalmente, do ponto C ao ponto D, a partícula move-se horizontalmente experimentando atrito com a superfície. Após percorrer a distância entre C e D, igual a 3h, a partícula atinge o repouso.


Imagem associada para resolução da questão


Considerando que os pontos B e C estão na borda do poço, que o coeficiente de atrito dinâmico entre a partícula e o trecho Imagem associada para resolução da questão é igual a 0,5 e que durante a colisão com o fundo do poço a partícula não desliza, a razão entre o diâmetro do poço e a altura de onde foi abandonada a partícula, x/h , vale

Alternativas
Q829259 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Em muitos problemas de física desprezam-se as forças de resistência ao movimento. Entretanto, sabe-se que, na prática, essas forças são significativas e muitas vezes desempenham um papel determinante.

Por exemplo, “no automobilismo, os veículos comumente possuem dispositivos aerodinâmicos implementados, os quais têm a função de contribuir para o aumento da ‘Downforce’, uma força vertical, inversa à sustentação, que busca incrementar a aderência dos pneus ao asfalto através de um acréscimo na carga normal, permitindo que o veículo possa realizar as curvas com uma velocidade maior do que o faria sem estes dispositivos”.

(Trecho retirado da monografia intitulada “Sistema ativo de redução de arrasto aerodinâmico por atuador aplicado a um protótipo de fórmula SAE”, de autoria de Danilo Barbosa Porto, apresentada na Escola de Engenharia de São Carlos, da Universidade de São Paulo, em 2016).

Para avaliar o papel da “Downforce”, considere um carro de Fórmula 1, de massa M, realizando uma curva em determinada pista plana. Ao se desprezar completamente os efeitos produzidos pelo seu movimento em relação ao ar, mas considerando o atrito entre pneus e o asfalto, o carro consegue fazer a curva, sem derrapar, a uma velocidade máxima V. Porém, ao levar em conta, especificamente, a atuação da “Downforce” D (desconsiderando a força de arrasto) a velocidade máxima V' do carro, nessa mesma curva, muda em função de D. Nessas condições, o gráfico que melhor representa a relação Imagem associada para resolução da questão em função de D é

Alternativas
Q829260 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Um corpo M de dimensões desprezíveis e massa 10 kg movimentando-se em uma dimensão, inicialmente com velocidade Imagem associada para resolução da questão , vai sucessivamente colidindo inelasticamente com N partículas m, todas de mesma massa 1 kg, e com velocidades de módulo v = 20 m/s, que também se movimentam em uma dimensão de acordo com a Figura 1, a seguir.


Imagem associada para resolução da questão


O gráfico que representa a velocidade final do conjunto vf após cada colisão em função do número de partículas N é apresentado na Figura 2, a seguir.


Imagem associada para resolução da questão


Desconsiderando as forças de atrito e a resistência do ar sobre o corpo e as partículas, a colisão de ordem No na qual a velocidade do corpo resultante (corpo M + No partículas m) se anula, é,

Alternativas
Q829261 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Uma rampa, homogênea, de massa m e comprimento L, é inicialmente colocada na horizontal. A extremidade A, dessa rampa, encontra-se acoplada a uma articulação sem atrito. Na extremidade B está sentado, em repouso, um garoto, também de massa m. Essa extremidade B está presa ao chão, por um fio ideal, e ao teto, por uma mola ideal, de constante elástica k, conforme ilustra a Figura 1.


Imagem associada para resolução da questão


Em um determinado instante o garoto corta o fio. A mola, que está inicialmente deformada de um valor ∆x , passa a erguer lentamente a extremidade B da rampa, fazendo com que o garoto escorregue, sem atrito e sem perder o contato com a rampa, até a extremidade A, conforme Figura 2.


Imagem associada para resolução da questão


Quando o garoto, que neste caso deve ser tratado como partícula, atinge a extremidade A, a mola se encontra em seu comprimento natural (sem deformação) e a rampa estará em repouso e inclinada de um ângulo θ . Considerando g o módulo da aceleração da gravidade local, nessas condições, a velocidade do garoto em A, vale

Alternativas
Q829262 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Dois recipientes A e B, contendo o mesmo volume de água, são colocados separadamente sobre duas balanças I e II, respectivamente, conforme indicado na figura a seguir.


Imagem associada para resolução da questão


A única diferença entre os recipientes A e B está no fato de que B possui um “ladrão” que permite que a água escoe para um outro recipiente C, localizado fora das balanças.

Em seguida, mergulha-se, lentamente, sem girar e com velocidade constante, por meio de um fio ideal, em cada recipiente, um cilindro metálico, maciço, de material não homogêneo, de tal forma que o seu eixo sempre se mantém na vertical. Os cilindros vão imergindo na água, sem provocar variação de temperatura e sem encostar nas paredes e nos fundos dos recipientes, de tal forma que os líquidos, nos recipientes A e B, sempre estarão em equilíbrio hidrostático no momento da leitura nas balanças. O gráfico que melhor representa a leitura L das balanças I e II, respectivamente, LI e LII em função da altura h submersa de cada cilindro é

Alternativas
Q829263 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Considere dois tubos cilíndricos (1 e 2), verticais, idênticos e feitos do mesmo material, contendo um mesmo líquido em equilíbrio até a altura de 50,0 cm, conforme figura a seguir.


Imagem associada para resolução da questão


As temperaturas nos dois tubos são inicialmente iguais e de valor 35 °C. O tubo 1 é resfriado até 0 °C, enquanto o tubo 2 é aquecido até 70 °C, e a altura do líquido em cada tubo passa a ser o valor indicado na figura. Sabendo-se que o coeficiente de dilatação térmica dos tubos é desprezível quando comparado com o do líquido, o coeficiente de dilatação volumétrica do líquido, considerado constante, é, em °C −1 ,

Alternativas
Q829264 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Um sistema gasoso constituído por n mols de um gás perfeito passa do estado x para o estado y por meio dos processos distintos 1 e 2 mostrados no esquema a seguir.


Imagem associada para resolução da questão

Se no processo 2 o sistema realiza um trabalho de 200 J e absorve uma quantidade de calor de 500 J, é correto afirmar que
Alternativas
Q829265 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Um recipiente vazio, perfeitamente transparente, no formato de uma lente esférica delgada gaussiana, de raio a, é preenchido com água límpida e cristalina até a metade de sua capacidade (Figura 1).  


                                          Imagem associada para resolução da questão


Essa lente é então fixada a uma determinada distância de uma fotografia quadrada de lado 3a (Figura 2), tendo seus centros geométricos alinhados (Figura 3).  

Imagem associada para resolução da questão

Considerando que o sistema lente-fotografia esteja imerso no ar, um observador na posição O (Figura 3), poderá observar, dentre as opções abaixo, a imagem da situação apresentada, como sendo

Alternativas
Q829266 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

                 COMO A HIPERMETROPIA ACONTECE NA INFÂNCIA:

É muito comum bebês e crianças apresentarem algum tipo de erro refrativo, e a hipermetropia é o caso mais constante. Isso porque este tipo de ametropia (erro de refração) pode se manifestar desde a fase de recém-nascido. A hipermetropia é um erro de refração caracterizado pelo modo em que o olho, menor do que o normal, foca a imagem atrás da retina. Consequentemente, isso faz com que a visão de longe seja melhor do que a de perto. (...)

De acordo com a Dra. Liana, existem alguns fatores que podem influenciar a incidência de hipermetropia em crianças, como o ambiente, a etnia e, principalmente, a genética. “As formas leves e moderadas, com até seis dioptrias, são passadas de geração para geração (autossômica dominante). Já a hipermetropia elevada é herdada dos pais (autossômica recessiva)”, explicou a especialista.

A médica ainda relatou a importância em identificar, prematuramente, o comportamento hipermétrope da criança, caso contrário, esse problema pode afetar a rotina visual e funcional delas. “A falta de correção da hipermetropia pode dificultar o processo de aprendizado, e ainda pode reduzir, ou limitar, o desenvolvimento nas atividades da criança. Em alguns casos, pode ser responsável por repetência, evasão escolar e dificuldade na socialização, requerendo ações de identificação e tratamento”, concluiu a Dra. Liana.

Os sintomas relacionados à hipermetropia, além da dificuldade de enxergar de perto, variam entre: dores de cabeça, fadiga ocular e dificuldade de concentração em leitura.(...)

O tratamento utilizado para corrigir este tipo de anomalia é realizado através da cirurgia refrativa. O uso de óculos (com lentes esféricas) ou lentes de contato corretivas é considerado método convencional, que pode solucionar o problema visual do hipermétrope.

(Disponível em:www.cbo.net.br/novo/publicacao/revista_vejabem. Acesso em: 18 fev. 2017.)


De acordo com o texto acima, a hipermetropia pode ser corrigida com o uso de lentes esféricas. Dessa maneira, uma lente corretiva, delgada e gaussiana, de vergência igual a +2 di, conforme figura a seguir, é utilizada para projetar, num anteparo colocado a uma distância p' da lente, a imagem de um corpo luminoso que oscila em movimento harmônico simples (MHS). A equação que descreve o movimento oscilatório desse corpo é Imagem associada para resolução da questão


                                 Imagem associada para resolução da questão

Considere que a equação que descreve a oscilação projetada no anteparo é dada por  y'=(0,5)sen Imagem associada para resolução da questão (Sl) . 

Nessas condições, a distância p′ , em cm, é  

Alternativas
Q829267 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Uma fonte sonora A, em repouso, emite um sinal sonoro de frequência constante fA = 100 Hz. Um sensor S desloca-se A com velocidade constante VS = 80 m/s, em relação à Terra, sobre um plano perfeitamente retilíneo, em direção à fonte sonora, como mostra a Figura 1.  


                         Imagem associada para resolução da questão


O sensor registra a frequência aparente devido à sua movimentação em relação à fonte sonora e a reenvia para um laboratório onde um sistema de caixas sonoras, acopladas a três tubos sonoros, de comprimentos L1, L2 e L3, reproduz essa frequência aparente fazendo com que as colunas de ar desses tubos vibrem produzindo os harmônicos apresentados na Figura 2.  


                             Imagem associada para resolução da questão

Considere que o sensor se movimenta em um local onde a velocidade do som é constante e igual a 320 m/s, que os tubos sonoros possuam diâmetros muito menores do que seus respectivos comprimentos e que a velocidade do som no interior desses tubos seja também constante e igual a 320 m/s. Considere também que a fonte A e o ar estejam em repouso em relação à Terra. Nessas condições, é correto afirmar que os comprimentos L1, L2 e L3  , respectivamente, , em metros, são 

Alternativas
Q829268 Física

Na questão de Física, quando necessário, use:

• Aceleração da gravidade: g = 10 m/s2 ;

• sen 19° = cos 71° = 0,3;

• sen 71°= cos 19° = 0,9;

• Velocidade da luz no vácuo: c = 3,0 ⋅ 10 m/s 8 ;

• Constante de Planck: h = 6,6 ⋅10-34 J.s;

• 1eV = 1,6 ⋅10-19 J;

• Potencial elétrico no infinito: zero.

Três cargas elétricas pontuais, q1, q2 e q3  , estão fixas de tal forma que os segmentos de reta que unem cada par de carga formam um triângulo equilátero com o plano na vertical, conforme ilustra a figura a seguir.  


                                    Imagem associada para resolução da questão


M é o ponto médio do segmento que une q2 e q3. A carga elétrica q2 é positiva e igual a Q, enquanto que qe q3 são desconhecidas. Verifica-se que o vetor campo elétrico Imagem associada para resolução da questão no ponto M, gerado por estas três cargas, forma com o lado que une q2 e q3 um ângulo θ de 19° e está apontado para baixo.

Sabendo-se, ainda, que a força elétrica de interação entre as cargas q1 e q2 é menor que a força elétrica entre q2 e q3, é correto afirmar que 

Alternativas
Respostas
41: C
42: B
43: D
44: A
45: B
46: C
47: D
48: A
49: D
50: C
51: B
52: B
53: D
54: A
55: A
56: B
57: B
58: C
59: A
60: B