Questões de Concurso Militar AFA 2020 para Aspirante da Aeronáutica (Aviador)
Foram encontradas 64 questões
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
O sistema ilustrado na figura abaixo é composto de três blocos, A, B e C, de dimensões desprezíveis e de mesma massa, duas roldanas e dois fios, todos ideais.
Quando o sistema é abandonado, a partir da configuração indicada na figura, o bloco A passa, então, a deslizar sobre o plano horizontal da mesa, enquanto os blocos B e C descem na vertical e a tração estabelecida no fio que liga os blocos A e B vale TB.
Em determinado instante, o bloco C se apoia sobre uma cadeira, enquanto B continua descendo e puxando A, agora através de uma tração T'B.
Desprezando quaisquer resistências durante o movimento
dos blocos, pode-se afirmar que a razão T'B /TB vale
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Duas partículas idênticas, A e B, se movimentam ao longo de uma mesma trajetória x, sendo suas posições, em função do tempo, dadas por xA = 2t e xB = 4 + t, respectivamente, com x em metros e t em segundos. Em determinado instante, as partículas, que formam um sistema isolado, sofrem uma colisão parcialmente elástica, com coeficiente de restituição e = 0,5.
Nessas condições e desprezando o deslocamento dessas partículas durante a colisão, quando a partícula A estiver na posição 28 m, a partícula B estará na posição, em m,
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere uma barra homogênea, retilínea e horizontal fixa
em uma de suas extremidades pelo ponto O, e submetida à
ação de uma força na outra extremidade, no ponto P,
conforme mostra a Figura 1.
A distância entre os pontos O e P vale x, e a ação da força gera um torque M1 na barra, em relação ao ponto de fixação.
Dobrando-se a barra, de acordo com a Figura 2, e
aplicando-se novamente a mesma força no ponto P, um
novo torque M2 é gerado em relação ao ponto O.
Considere que a barra não possa ser deformada por ação
da força .
Nestas condições, a razão M1 /M2 entre os torques gerados
pela força , nas duas configurações apresentadas, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere uma dada massa gasosa de um gás perfeito que pode ser submetida a três transformações cíclicas diferentes I, II e III, como mostram os respectivos diagramas abaixo.
O gás realiza trabalhos totais τI, τII e τIII respectivamente nas transformações I, II e III.
Nessas condições, é correto afirmar que
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um observador O visualiza uma placa com a inscrição AFA através de um periscópio rudimentar construído com dois espelhos planos E1 e E2 paralelos e inclinados de 45º em relação ao eixo de um tubo opaco, conforme figura abaixo.
Nessas condições, a opção que melhor representa,
respectivamente, a imagem da palavra AFA conjugada pelo
espelho E1 e a imagem final que o observador O visualiza através do espelho E2 é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um dioptro plano constituído de dois meios homogêneos e transparentes de índices de refração n1 = 1 e n2 = 4/3, separados por uma superfície S perfeitamente plana.
No meio de índice de refração n1 encontra-se um objeto pontual B, distante d, da superfície S, assim como, no outro meio encontra-se um objeto idêntico A, também distante d, da superfície do dioptro como mostra a figura abaixo.
A imagem A1 de A é vista por um observador O1 que se encontra no meio n1; por sua vez, a imagem B1 de B é vista por um observador O2 que se encontra no meio n2.
O dioptro plano é considerado perfeitamente estigmático e os raios que saem de A e B são pouco inclinados em relação à vertical que passa pelos dois objetos.
Considere que A e B sejam aproximados verticalmente da
superfície S de uma distância d/2 e suas novas imagens, A2
e B2, respectivamente, sejam vistas pelos observadores O1
e O2.
Nessas condições, a razão dA /dB entre as distâncias, dA e
dB, percorridas pelas imagens dos objetos A e B, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Uma partícula eletrizada positivamente com uma carga igual a 5 µC é lançada com energia cinética de 3 J, no vácuo, de um ponto muito distante e em direção a uma outra partícula fixa com a mesma carga elétrica.
Considerando apenas interações elétricas entre estas duas
partículas, o módulo máximo da força elétrica de interação
entre elas é, em N, igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No circuito abaixo, a bateria possui fem igual a ε e resistência interna r constante e a lâmpada incandescente L apresenta resistência elétrica ôhmica igual a 2r. O reostato R tem resistência elétrica variável entre os valores 2r e 4r.
Ao deslocar o cursor C do reostato de A até B, verifica-se
que o brilho de L
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
![Imagem associada para resolução da questão](https://arquivos.qconcursos.com/images/provas/78916/6d82d1797bf2391fb6cc.png)
Os valores das resistências elétricas de R1 e R2 foram ajustados adequadamente de tal forma que cada associação de geradores transfere a máxima potência a cada um dos resistores. Despreze a influência da temperatura na resistência elétrica e no calor específico da água e considere que todos os geradores apresentem a mesma fem e a mesma resistência interna. Fecha-se simultaneamente as chaves Ch1 e Ch2 e, após 5 min, verifica-se que a variação de temperatura da água no recipiente 1 foi de 20 ºC. Nesse mesmo intervalo, a água no recipiente 2 apresenta uma variação de temperatura, em ºC, igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um circuito ôhmico com capacitância e autoindução desprezíveis. Através de uma superfície fixa
delimitada por este circuito (Figura 1) aplica-se um campo
magnético cuja intensidade varia no tempo t de acordo
com o gráfico mostrado na Figura 2.
Nessas condições, a corrente induzida i no circuito
esquematizado na Figura 1, em função do tempo t, é
melhor representada pelo gráfico
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No interior do Sol, reações nucleares transformam quantidades enormes de núcleos de átomos de hidrogênio (H), que se combinam e produzem núcleos de átomos de hélio (He), liberando energia.
A cada segundo ocorrem 1038 reações de fusão onde quatro átomos de hidrogênio se fundem para formar um átomo de hélio, conforme esquematizado abaixo:
4H → He + Energia.
A energia liberada pelo Sol, a cada segundo, seria capaz de manter acesas um certo número de lâmpadas de 100 W. Nessas condições, a ordem de grandeza desse número de lâmpadas é igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
O ozônio (O3) é naturalmente destruído na estratosfera superior pela radiação proveniente do Sol.
Para cada molécula de ozônio que é destruída, um átomo de oxigênio (O) e uma molécula de oxigênio (O2) são formadas, conforme representado abaixo:
Sabendo-se que a energia de ligação entre o átomo de
oxigênio e a molécula O2 tem módulo igual a 3,75 eV, então
o comprimento de onda dos fótons da radiação necessária
para quebrar uma ligação do ozônio e formar uma molécula
O2 e um átomo de oxigênio vale, em nm,
Abaixo são feitas afirmações que consideram aspectos gramaticais e de interpretação do texto II.
I- A repetição do síndeto “E” introduz formas verbais que mostram a violência contra a personagem. É o que vemos em “apanhando”, “sangrando”, “surrá-la” e “jogou-a".
II- As metáforas que têm como núcleos os adjetivos “santa” e “anjo” encobrem uma postura de certo modo conformada dos vizinhos e parentes. Eles se mantêm distantes do que acontece.
III- O advérbio “igualmente”. (l. 03), no sentido denotativo é sinônimo de “ juntos”, e significa que tanto vizinhos quanto parentes se surpreendem com a morte de D. Eulália; no sentido conotativo, é irônico e sinônimo de “como antes”, significando que vizinhos e parentes se surpreendem com a morte, assim como já haviam se surpreendido quando ela apanhava.
IV- No dicionário Aurélio, eulalia significa boa maneira de falar, boa dicção e dicção fácil. No texto, porém, o sentido de Eulália é outro: ela é a mulher que apanha, sangra e é jogada pela janela, mas mantém-se sem voz, fazendo valer as metáforas “é uma santa” e “é um anjo”.
V- Em “romper em asas o voo de sua trajetória”, está presente o sentido conotativo. A autora, valendo-se do eufemismo, suaviza, criticamente, a morte de D. Eulália.
Estão corretas
TEXTO III
Mulheres de Atenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Vivem pros seus maridos
Orgulho e raça de Atenas
Quando amadas, se perfumam
Se banham com leite, se
Arrumam
Suas melenas
Quando fustigadas não choram
Se ajoelham, pedem, imploram
Mais duras penas; cadenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Sofrem pros seus maridos
Poder e Força de Atenas
(...)
Elas não têm gosto ou vontade
Nem defeito, nem qualidade
Têm medo apenas
Não têm sonhos, só têm
Presságios
O seu homem, mares,
Naufrágios
Lindas sirenas, morenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Temem por seus maridos
Heróis e amantes de Atenas
As jovens viúvas marcadas
E as gestantes abandonadas
Não fazem cenas
Vestem-se de negro, se
Encolhem
Se conformam e se recolhem
Às suas novenas, serenas
(HOLANDA, Chico Buarque de. Meus caros amigos. LP, 1976.
Phonogram/Philips)
TEXTO III
Mulheres de Atenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Vivem pros seus maridos
Orgulho e raça de Atenas
Quando amadas, se perfumam
Se banham com leite, se
Arrumam
Suas melenas
Quando fustigadas não choram
Se ajoelham, pedem, imploram
Mais duras penas; cadenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Sofrem pros seus maridos
Poder e Força de Atenas
(...)
Elas não têm gosto ou vontade
Nem defeito, nem qualidade
Têm medo apenas
Não têm sonhos, só têm
Presságios
O seu homem, mares,
Naufrágios
Lindas sirenas, morenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Temem por seus maridos
Heróis e amantes de Atenas
As jovens viúvas marcadas
E as gestantes abandonadas
Não fazem cenas
Vestem-se de negro, se
Encolhem
Se conformam e se recolhem
Às suas novenas, serenas
(HOLANDA, Chico Buarque de. Meus caros amigos. LP, 1976.
Phonogram/Philips)
Considere as afirmativas acerca da canção de Chico Buarque, texto III.
I. Na segunda estrofe, há a presença de uma gradação que reforça o grau de submissão da postura feminina.
II. Todas as ocorrências do pronome “se”, ao longo do texto, justificam-se pelo seu teor de reflexividade, realçando, assim, as ações e os gestos próprios das mulheres.
III. Os últimos versos da 1ª e 3ª estrofes destacam atributos da cidade de Atenas, por meio da utilização de prosopopeia, recurso recorrente em textos poéticos e musicais.
IV. Na quarta estrofe, há uma estrutura antitética que se dá no plano imaginário e inconsciente das mulheres.
Estão corretas apenas