Questões de Concurso Militar AFA 2021 para Aspirante da Aeronáutica (Aviador)
Foram encontradas 16 questões
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Na Figura 1, a seguir, tem-se uma vista de cima de um movimento circular uniforme descrito por duas partículas, A e B, que percorrem trajetórias semicirculares, de raios RA e RB, respectivamente, sobre uma mesa, mantendo-se sempre alinhadas com centro C.
Ao chegarem à borda da mesa, conforme ilustra a Figura 2, as partículas são lançadas horizontalmente e descrevem trajetórias parabólicas, livres de quaisquer forças de resistência, até chegarem ao piso, que é plano e horizontal. Ao longo dessa queda, as partículas A e B percorrem distâncias horizontais, XA e XB, respectivamente.
Considerando RB = 4RA, a razão
XB /XA
será igual a
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Foram apresentados a um aluno de física, os seguintes gráficos representativos de movimentos retilíneos.
Ao analisar os gráficos o aluno percebeu que podem
representar um mesmo movimento, os gráficos
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Um candidato ao Curso de Formação de Oficiais Aviadores, após ser aprovado em todas as etapas anteriores, deverá realizar um Teste de Avaliação do Condicionamento Físico (TACF). Uma das provas do TACF consiste em correr 2.000 m dentro de um intervalo de tempo máximo. Para realizá-la, tal candidato dará 5 voltas completas, numa pista constituída de dois trechos retilíneos, de comprimento L, e de dois trechos semicirculares, de raio R, mantendo-se sempre sobre a linha pontilhada, conforme ilustra a figura a seguir.
Em sua primeira volta, o candidato percorre os trechos semicirculares com velocidade constante v e os trechos retilíneos com velocidade constante 3/2 v. Além disso, sua velocidade escalar média, nessa primeira volta, foi igual a 6/5 v .
Nessas condições, o trecho retilíneo L dessa pista tem
comprimento, em m, igual a
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Dois blocos, A e B, de dimensões desprezíveis são abandonados, partindo do repouso, do topo de um plano inclinado de 30º em relação à horizontal; percorrendo, depois de um mesmo intervalo de tempo, as distâncias indicadas conforme ilustra a figura seguinte.
Sejam µA e µB, os coeficientes de atrito cinético entre a
superfície do plano inclinado e os blocos A e B,
respectivamente. Considerando μA
= 2μB
, então μB
vale
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Uma viga homogênea com 3 m de comprimento se encontra em equilíbrio, presa à parede através dos pontos A e B, conforme ilustra a figura seguinte. No ponto A, existe uma articulação, sem atrito, que permite o giro livre da viga. No ponto B, uma mola ideal 1, cuja deformação é x, liga a viga à parede.
Uma carga P está pendurada, através de um fio ideal, na extremidade C da viga e se encontra a uma altura de 2 m em relação à extremidade livre de uma mola ideal 2, verticalmente fixada sobre o piso horizontal, como também pode ser observado na figura.
Em dado instante, corta-se o fio e P cai, sem sofrer resistência do ar, sobre o aparador, de massa desprezível, fazendo com que a mola 2 sofra uma deformação de 40 cm até parar.
Sabendo que sen θ = 0,6, cos θ = 0,8 e que as constantes
elásticas da mola 1 e 2 são iguais, pode-se afirmar que a
deformação x, da mola 1, em cm, antes do fio ser cortado,
era igual a
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Uma barra homogênea e impermeável de massa específica ρ é mantida presa, por um fio ideal, ao fundo de um tanque que contém dois líquidos não miscíveis, de densidades ρA e ρB, conforme a figura abaixo:
Para que seja nula a tração no fio, a razão entre o volume da
barra que fica submersa apenas no líquido de densidades ρA
e o seu volume total, pode ser expressa por:
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
A umidade relativa do ar fornece o grau de concentração de vapor de água em um ambiente. Quando essa concentração atinge 100% (que corresponde ao vapor saturado) ocorre uma condensação.
A umidade relativa (UR) é obtida fazendo-se uma comparação entre a densidade do vapor d’água presente no ar e a densidade do vapor se este estivesse saturado, ou seja, UR = densidade do vapor d'água presente no ar /densidade do vapor d'água saturado .
A tabela a seguir fornece a concentração máxima de vapor d’água (em g/cm3 ) medida nas temperaturas indicadas.
Em um certo dia de temperatura 32 ºC e umidade relativa de 40%, uma pessoa percebe que um copo com refrigerante gelado passa a condensar vapor d’água (fica “suado”).
Nessas condições, a temperatura, em ºC, do copo com o
refrigerante era, no máximo,
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Uma porta retangular de vidro, de 12 mm de espessura, 2,0 m de altura e 1,0 m de largura, separa um ambiente, onde a temperatura é mantida a 20 ºC, do meio externo, cuja temperatura é - 4 ºC.
Considerando que a perda de calor desse ambiente se dê apenas através da porta, a potência, em W, de um aquecedor capaz de manter constante esta temperatura deve ser igual a
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Para encher o pneu de sua bicicleta, um ciclista, conforme figura a seguir, dispõe de uma bomba em formato cilíndrico, cuja área de seção transversal (A) é igual a 20 cm2 . A mangueira de conexão (M) é indeformável e tem volume desprezível.
O pneu dianteiro da bicicleta tem volume de 2,4 L e possui, inicialmente, uma pressão interna de 0,3 atm. A pressão interna da bomba, quando o êmbolo (E) está todo puxado à altura (H) de 36 cm, é igual a 1 atm (pressão atmosférica normal).
Considere que, durante a calibragem, o volume do pneu permanece constante e que o processo é isotérmico, com temperatura ambiente de 27 ºC.
Nessas condições, para elevar a pressão do pneu até
6,3 atm, o número de repetições que o ciclista deverá fazer,
movendo o êmbolo até o final do seu curso, é
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Um projétil de massa 2m é disparado horizontalmente com velocidade de módulo v, conforme indica a Figura 1, e se movimenta com essa velocidade até que colide com um pêndulo simples, de comprimento L e massa m, inicialmente em repouso, em uma colisão perfeitamente elástica.
Considere que o projétil tenha sido lançado de uma distância muito próxima do pêndulo e que, após a colisão, esse pêndulo passe a oscilar em movimento harmônico simples, como indica a Figura 2, com amplitude A.
Desprezando a ação de forças dissipativas, o período de
oscilação desse pêndulo, logo após a colisão, é dado por
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Um arranjo óptico, representado pela Figura 1, é constituído de um objeto luminoso bidimensional alinhado com o centro óptico e geométrico de um suporte S que pode ser ocupado individualmente por uma lente esférica convergente (L1), uma lente esférica divergente (L2), um espelho esférico gaussiano convexo (E1), um espelho esférico gaussiano côncavo (E2) ou por um espelho plano (E3).
Considere que todos os elementos gráficos, que podem ser instalados no suporte, sejam ideais e que o arranjo esteja imerso no ar.
Utilizando-se, aleatória e separadamente, os elementos L1, L2, E1, E2 e E3, no suporte S, pode-se observar as imagens I1, I2, I3, I4 e I5 conjugadas por esses elementos, conforme Figura 2.
Nessas condições, a única sequência que associa
corretamente cada elemento gráfico utilizado à sua possível
imagem conjugada, I1, I2, I3, I4 e I5, respectivamente, é
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
A equação de uma onda periódica harmônica se propagando em um meio unidimensional é dada, em unidades do SI, por y(x,t) = π2 cos(80πt - 2πx).
Nessas condições, são feitas as seguintes afirmativas sobre essa onda:
I) O comprimento de onda é 2 m.
II) A velocidade de propagação é 40 m/s.
III) A frequência é 50 Hz.
IV) O período de oscilação é 2,5∙10-2 s.
V) A amplitude de onda é de π m e a onda se propaga para a direita.
São corretas apenas as afirmativas
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Considere duas fontes pontuais, F1 e F2, coerentes, separadas por uma certa distância, que emitem ondas periódicas harmônicas de frequência f = 340 Hz em um meio bidimensional, homogêneo e isotrópico. Um sensor de interferência é colocado em um ponto P, que se encontra sobre a mesma mediatriz que o ponto O, pertencente ao segmento que une as fontes F1 e F2, como representa a figura seguinte.
No ponto P, o sensor registra uma interferência construtiva. Posteriormente, este sensor é movido para o ponto O ao longo do segmento e deslocado para o ponto C, distante 4,25 m da fonte F1. Nesse ponto C, o sensor se posiciona na segunda linha nodal da estrutura de interferência produzida pelas fontes.
Reposicionando o sensor para o ponto Q, distante 0,50 m do
ponto C, obtém-se a primeira linha nodal. Nessas condições,
a distância x, em metro, entre o ponto Q e o segundo máximo
secundário, localizado no ponto R, é igual a
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Uma fonte emite dois tipos de partículas eletricamente carregadas, P1 e P2, que são lançadas no interior de uma região onde atua somente um campo elétrico vertical e uniforme Essas partículas penetram perpendicularmente ao campo, a partir do ponto A, com velocidade , indo colidir num anteparo vertical nos pontos S e R, conforme ilustrado na figura.
Observando as medidas indicadas na figura acima e
sabendo que a partícula P1 possui carga elétrica q1 e massa
m1 e que a partícula P2 possui carga elétrica q2 e massa m2,
pode-se afirmar que a razão |q1| / |q2| vale
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Para determinar o calor específico de um objeto de material desconhecido, de massa igual a 600 g, um professor sugeriu aos seus alunos um experimento que foi realizado em duas etapas.
1ª etapa: no interior de um recipiente adiabático, de capacidade térmica desprezível, colocou-se certa quantidade de água que foi aquecida por uma resistência elétrica R. Utilizando-se de um amperímetro A e de um voltímetro V, ambos ideais, manteve-se a corrente e a voltagem fornecidas por uma bateria em 2 A e 20 V, conforme ilustrado na Figura 1.
Com a temperatura θ lida no termômetro T, obteve-se, em função do tempo de aquecimento Δt, o gráfico representado na Figura 2.
2ª etapa: repete-se a experiência, desde o início, desta vez, colocando o objeto de material desconhecido imerso na água. Sem alterar a quantidade de água, a corre
Considerando que, em ambas as etapas, toda energia
elétrica foi dissipada por efeito Joule no resistor R, pode-se
concluir que o calor específico do material de que é feito o
objeto é, em cal/(g∙°C) igual a
Na questão de Física, quando necessário, utilize:
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• condutividade térmica do vidro: K = 0,8 W/(m·K)
• 1 atm = 1,0·105 N/m2
• constante universal dos gases: R = 8,0 J/(mol·K)
• 1 L = 1 dm3
• 1 cal = 4 J
• calor específico da água: c = 1 cal/(g·ºC)
• velocidade da luz no vácuo: c = 3 x 108 m/s
• constante de Planck: h = 6,6 x 10-34 J∙s
• carga elementar (e) = 1,6 x 10-19 C
• 1 Å = 10-10 m
Em um dos métodos usados para gerar raios X, elétrons colidem com alvo metálico perdendo energia cinética e gerando fótons, cujos comprimentos de onda podem variar de 10-8 m a 10-11 m, aproximadamente. A figura a seguir representa um equipamento para a produção de raios X, em que T é um tubo de vidro, G é um gerador que envia uma corrente elétrica a um filamento de tungstênio F e A é um alvo metálico.
O filamento aquecido libera elétrons (efeito termiônico) que são acelerados pela fonte de alta tensão e, em seguida, bombardeiam o alvo A, ocorrendo aí a produção dos raios X.
Se a ddp na fonte de alta tensão for de 25 kV, o comprimento
de onda mínimo, em Å, dos fótons de raios X será de,
aproximadamente,