Questões Militares Para policial

Foram encontradas 36.637 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015301 Inglês


Six things I learned from riding in a Google self-driving car


1 - Human beings are terrible drivers.

      We drink. We doze. We text. In the US, 30,000 people die from automobile accidents every year. Traffic crashes are the primary cause of death worldwide for people aged 15-24, and during a crash, 40% of drivers never even hit the brakes. We’re flawed organisms, barreling around at high speeds in vessels covered in glass, metal, distraction, and death. This is one of Google’s “moonshots” – to remove human error from a job which, for the past hundred years, has been entirely human.

2 - Google self-driving cars are timid.

        The car we rode in did not strike me as dangerous. It drove slowly and deliberately, and I got the impression that it’s more likely to annoy other drivers than to harm them. In the early versions they tested on closed courses, the vehicles were programmed to be highly aggressive. Apparently during these tests, which involved obstacle courses full of traffic cones and inflatable crash-test objects, there were a lot of screeching brakes, roaring engines and terrified interns.

3 - They’re cute.

        Google’s new fleet was intentionally designed to look adorable. Our brains are hardwired to treat inanimate (or animate) objects with greater care, caution, and reverence when they resemble a living thing. By turning self-driving cars into an adorable Skynet Marshmallow Bumper Bots, Google hopes to spiritually disarm other drivers. I also suspect the cuteness is used to quell some of the road rage that might emerge from being stuck behind one of these things. They’re intended as moderate-distance couriers, not openroad warriors, so their max speed is 25 miles per hour.

4 - It’s not done and it’s not perfect.

      Some of the scenarios autonomous vehicles have the most trouble with are the same human beings have the most trouble with, such as traversing four-way stops or handling a yellow light. The cars use a mixture of 3D laser-mapping, GPS, and radar to analyze and interpret their surroundings, and the latest versions are fully electric with a range of about 100 miles. Despite the advantages over a human being in certain scenarios, however, these cars still aren’t ready for the real world. They can’t drive in the snow or heavy rain, and there’s a variety of complex situations they do not process well, such as passing through a construction zone. Google is hoping that, eventually, the cars will be able to handle all of this as well (or better) than a human could.

5 - I want this technology to succeed, like… yesterday.

        I’m biased. Earlier this year my mom had a stroke. It damaged the visual cortex of her brain, and her vision was impaired to the point that she’ll probably never drive again. This reduced her from a fully-functional, independent human being with a career and a buzzing social life into someone who is homebound, disabled, and powerless. When discussing self-driving cars, people tend to ask many superficial questions. They ignore that 45% of disabled people in the US still work. They ignore that 95% of a car’s lifetime is spent parked. They ignore how this technology could transform the lives of the elderly, or eradicate the need for parking lots or garages or gas stations. They dismiss the entire concept because they don’t think a computer could ever be as good at merging on the freeway as they are. They ignore the great, big, beautiful picture: that this technology could make our lives so much better.

6 - It wasn’t an exhilarating ride, and that’s a good thing.

        Riding in a self-driving car is not the cybernetic thrill ride one might expect. The car drives like a person, and after a few minutes you forget that you’re being driven autonomously. You forget that a robot is differentiating cars from pedestrians from mopeds from raccoons. You forget that millions of photons are being fired from a laser and interpreting, processing, and reacting to the hand signals of a cyclist. You forget that instead of an organic brain, which has had millions of years to evolve the cognitive ability to fumble its way through a four-way stop, you’re being piloted by an artificial one, which was birthed in less than a decade. The unfortunate part of something this transformative is the inevitable, ardent stupidity which is going to erupt from the general public. Even if in a few years self-driving cars are proven to be ten times safer than human-operated cars, all it’s going to take is one tragic accident and the public is going to lose their minds. There will be outrage. There will be politicizing. There will be hashtags. I say look at the bigger picture. All the self-driving cars currently on the road learn from one another, and possess 40 years of driving experience. And this technology is still in its infancy.


(Adapted from:: <http://theoatmeal.com/blog/google_self_driving_car> . 21/08/2016.)

The word “they”, in boldface and underlined, in section 3, refers to: 
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015300 Inglês


Six things I learned from riding in a Google self-driving car


1 - Human beings are terrible drivers.

      We drink. We doze. We text. In the US, 30,000 people die from automobile accidents every year. Traffic crashes are the primary cause of death worldwide for people aged 15-24, and during a crash, 40% of drivers never even hit the brakes. We’re flawed organisms, barreling around at high speeds in vessels covered in glass, metal, distraction, and death. This is one of Google’s “moonshots” – to remove human error from a job which, for the past hundred years, has been entirely human.

2 - Google self-driving cars are timid.

        The car we rode in did not strike me as dangerous. It drove slowly and deliberately, and I got the impression that it’s more likely to annoy other drivers than to harm them. In the early versions they tested on closed courses, the vehicles were programmed to be highly aggressive. Apparently during these tests, which involved obstacle courses full of traffic cones and inflatable crash-test objects, there were a lot of screeching brakes, roaring engines and terrified interns.

3 - They’re cute.

        Google’s new fleet was intentionally designed to look adorable. Our brains are hardwired to treat inanimate (or animate) objects with greater care, caution, and reverence when they resemble a living thing. By turning self-driving cars into an adorable Skynet Marshmallow Bumper Bots, Google hopes to spiritually disarm other drivers. I also suspect the cuteness is used to quell some of the road rage that might emerge from being stuck behind one of these things. They’re intended as moderate-distance couriers, not openroad warriors, so their max speed is 25 miles per hour.

4 - It’s not done and it’s not perfect.

      Some of the scenarios autonomous vehicles have the most trouble with are the same human beings have the most trouble with, such as traversing four-way stops or handling a yellow light. The cars use a mixture of 3D laser-mapping, GPS, and radar to analyze and interpret their surroundings, and the latest versions are fully electric with a range of about 100 miles. Despite the advantages over a human being in certain scenarios, however, these cars still aren’t ready for the real world. They can’t drive in the snow or heavy rain, and there’s a variety of complex situations they do not process well, such as passing through a construction zone. Google is hoping that, eventually, the cars will be able to handle all of this as well (or better) than a human could.

5 - I want this technology to succeed, like… yesterday.

        I’m biased. Earlier this year my mom had a stroke. It damaged the visual cortex of her brain, and her vision was impaired to the point that she’ll probably never drive again. This reduced her from a fully-functional, independent human being with a career and a buzzing social life into someone who is homebound, disabled, and powerless. When discussing self-driving cars, people tend to ask many superficial questions. They ignore that 45% of disabled people in the US still work. They ignore that 95% of a car’s lifetime is spent parked. They ignore how this technology could transform the lives of the elderly, or eradicate the need for parking lots or garages or gas stations. They dismiss the entire concept because they don’t think a computer could ever be as good at merging on the freeway as they are. They ignore the great, big, beautiful picture: that this technology could make our lives so much better.

6 - It wasn’t an exhilarating ride, and that’s a good thing.

        Riding in a self-driving car is not the cybernetic thrill ride one might expect. The car drives like a person, and after a few minutes you forget that you’re being driven autonomously. You forget that a robot is differentiating cars from pedestrians from mopeds from raccoons. You forget that millions of photons are being fired from a laser and interpreting, processing, and reacting to the hand signals of a cyclist. You forget that instead of an organic brain, which has had millions of years to evolve the cognitive ability to fumble its way through a four-way stop, you’re being piloted by an artificial one, which was birthed in less than a decade. The unfortunate part of something this transformative is the inevitable, ardent stupidity which is going to erupt from the general public. Even if in a few years self-driving cars are proven to be ten times safer than human-operated cars, all it’s going to take is one tragic accident and the public is going to lose their minds. There will be outrage. There will be politicizing. There will be hashtags. I say look at the bigger picture. All the self-driving cars currently on the road learn from one another, and possess 40 years of driving experience. And this technology is still in its infancy.


(Adapted from:: <http://theoatmeal.com/blog/google_self_driving_car> . 21/08/2016.)

Consider the following characteristics of the new Google self-driving car:


1. It runs on batteries and petrol.

2. It can be used in extreme weather conditions.

3. It has a design which requires further modifications.

4. It can reach the speed of 25 miles per hour.


Mark the correct alternative.

Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015299 Inglês


Six things I learned from riding in a Google self-driving car


1 - Human beings are terrible drivers.

      We drink. We doze. We text. In the US, 30,000 people die from automobile accidents every year. Traffic crashes are the primary cause of death worldwide for people aged 15-24, and during a crash, 40% of drivers never even hit the brakes. We’re flawed organisms, barreling around at high speeds in vessels covered in glass, metal, distraction, and death. This is one of Google’s “moonshots” – to remove human error from a job which, for the past hundred years, has been entirely human.

2 - Google self-driving cars are timid.

        The car we rode in did not strike me as dangerous. It drove slowly and deliberately, and I got the impression that it’s more likely to annoy other drivers than to harm them. In the early versions they tested on closed courses, the vehicles were programmed to be highly aggressive. Apparently during these tests, which involved obstacle courses full of traffic cones and inflatable crash-test objects, there were a lot of screeching brakes, roaring engines and terrified interns.

3 - They’re cute.

        Google’s new fleet was intentionally designed to look adorable. Our brains are hardwired to treat inanimate (or animate) objects with greater care, caution, and reverence when they resemble a living thing. By turning self-driving cars into an adorable Skynet Marshmallow Bumper Bots, Google hopes to spiritually disarm other drivers. I also suspect the cuteness is used to quell some of the road rage that might emerge from being stuck behind one of these things. They’re intended as moderate-distance couriers, not openroad warriors, so their max speed is 25 miles per hour.

4 - It’s not done and it’s not perfect.

      Some of the scenarios autonomous vehicles have the most trouble with are the same human beings have the most trouble with, such as traversing four-way stops or handling a yellow light. The cars use a mixture of 3D laser-mapping, GPS, and radar to analyze and interpret their surroundings, and the latest versions are fully electric with a range of about 100 miles. Despite the advantages over a human being in certain scenarios, however, these cars still aren’t ready for the real world. They can’t drive in the snow or heavy rain, and there’s a variety of complex situations they do not process well, such as passing through a construction zone. Google is hoping that, eventually, the cars will be able to handle all of this as well (or better) than a human could.

5 - I want this technology to succeed, like… yesterday.

        I’m biased. Earlier this year my mom had a stroke. It damaged the visual cortex of her brain, and her vision was impaired to the point that she’ll probably never drive again. This reduced her from a fully-functional, independent human being with a career and a buzzing social life into someone who is homebound, disabled, and powerless. When discussing self-driving cars, people tend to ask many superficial questions. They ignore that 45% of disabled people in the US still work. They ignore that 95% of a car’s lifetime is spent parked. They ignore how this technology could transform the lives of the elderly, or eradicate the need for parking lots or garages or gas stations. They dismiss the entire concept because they don’t think a computer could ever be as good at merging on the freeway as they are. They ignore the great, big, beautiful picture: that this technology could make our lives so much better.

6 - It wasn’t an exhilarating ride, and that’s a good thing.

        Riding in a self-driving car is not the cybernetic thrill ride one might expect. The car drives like a person, and after a few minutes you forget that you’re being driven autonomously. You forget that a robot is differentiating cars from pedestrians from mopeds from raccoons. You forget that millions of photons are being fired from a laser and interpreting, processing, and reacting to the hand signals of a cyclist. You forget that instead of an organic brain, which has had millions of years to evolve the cognitive ability to fumble its way through a four-way stop, you’re being piloted by an artificial one, which was birthed in less than a decade. The unfortunate part of something this transformative is the inevitable, ardent stupidity which is going to erupt from the general public. Even if in a few years self-driving cars are proven to be ten times safer than human-operated cars, all it’s going to take is one tragic accident and the public is going to lose their minds. There will be outrage. There will be politicizing. There will be hashtags. I say look at the bigger picture. All the self-driving cars currently on the road learn from one another, and possess 40 years of driving experience. And this technology is still in its infancy.


(Adapted from:: <http://theoatmeal.com/blog/google_self_driving_car> . 21/08/2016.)

Based on the reading, mark the correct alternative.
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015298 Inglês


Six things I learned from riding in a Google self-driving car


1 - Human beings are terrible drivers.

      We drink. We doze. We text. In the US, 30,000 people die from automobile accidents every year. Traffic crashes are the primary cause of death worldwide for people aged 15-24, and during a crash, 40% of drivers never even hit the brakes. We’re flawed organisms, barreling around at high speeds in vessels covered in glass, metal, distraction, and death. This is one of Google’s “moonshots” – to remove human error from a job which, for the past hundred years, has been entirely human.

2 - Google self-driving cars are timid.

        The car we rode in did not strike me as dangerous. It drove slowly and deliberately, and I got the impression that it’s more likely to annoy other drivers than to harm them. In the early versions they tested on closed courses, the vehicles were programmed to be highly aggressive. Apparently during these tests, which involved obstacle courses full of traffic cones and inflatable crash-test objects, there were a lot of screeching brakes, roaring engines and terrified interns.

3 - They’re cute.

        Google’s new fleet was intentionally designed to look adorable. Our brains are hardwired to treat inanimate (or animate) objects with greater care, caution, and reverence when they resemble a living thing. By turning self-driving cars into an adorable Skynet Marshmallow Bumper Bots, Google hopes to spiritually disarm other drivers. I also suspect the cuteness is used to quell some of the road rage that might emerge from being stuck behind one of these things. They’re intended as moderate-distance couriers, not openroad warriors, so their max speed is 25 miles per hour.

4 - It’s not done and it’s not perfect.

      Some of the scenarios autonomous vehicles have the most trouble with are the same human beings have the most trouble with, such as traversing four-way stops or handling a yellow light. The cars use a mixture of 3D laser-mapping, GPS, and radar to analyze and interpret their surroundings, and the latest versions are fully electric with a range of about 100 miles. Despite the advantages over a human being in certain scenarios, however, these cars still aren’t ready for the real world. They can’t drive in the snow or heavy rain, and there’s a variety of complex situations they do not process well, such as passing through a construction zone. Google is hoping that, eventually, the cars will be able to handle all of this as well (or better) than a human could.

5 - I want this technology to succeed, like… yesterday.

        I’m biased. Earlier this year my mom had a stroke. It damaged the visual cortex of her brain, and her vision was impaired to the point that she’ll probably never drive again. This reduced her from a fully-functional, independent human being with a career and a buzzing social life into someone who is homebound, disabled, and powerless. When discussing self-driving cars, people tend to ask many superficial questions. They ignore that 45% of disabled people in the US still work. They ignore that 95% of a car’s lifetime is spent parked. They ignore how this technology could transform the lives of the elderly, or eradicate the need for parking lots or garages or gas stations. They dismiss the entire concept because they don’t think a computer could ever be as good at merging on the freeway as they are. They ignore the great, big, beautiful picture: that this technology could make our lives so much better.

6 - It wasn’t an exhilarating ride, and that’s a good thing.

        Riding in a self-driving car is not the cybernetic thrill ride one might expect. The car drives like a person, and after a few minutes you forget that you’re being driven autonomously. You forget that a robot is differentiating cars from pedestrians from mopeds from raccoons. You forget that millions of photons are being fired from a laser and interpreting, processing, and reacting to the hand signals of a cyclist. You forget that instead of an organic brain, which has had millions of years to evolve the cognitive ability to fumble its way through a four-way stop, you’re being piloted by an artificial one, which was birthed in less than a decade. The unfortunate part of something this transformative is the inevitable, ardent stupidity which is going to erupt from the general public. Even if in a few years self-driving cars are proven to be ten times safer than human-operated cars, all it’s going to take is one tragic accident and the public is going to lose their minds. There will be outrage. There will be politicizing. There will be hashtags. I say look at the bigger picture. All the self-driving cars currently on the road learn from one another, and possess 40 years of driving experience. And this technology is still in its infancy.


(Adapted from:: <http://theoatmeal.com/blog/google_self_driving_car> . 21/08/2016.)

According to the author:
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015297 Inglês


Six things I learned from riding in a Google self-driving car


1 - Human beings are terrible drivers.

      We drink. We doze. We text. In the US, 30,000 people die from automobile accidents every year. Traffic crashes are the primary cause of death worldwide for people aged 15-24, and during a crash, 40% of drivers never even hit the brakes. We’re flawed organisms, barreling around at high speeds in vessels covered in glass, metal, distraction, and death. This is one of Google’s “moonshots” – to remove human error from a job which, for the past hundred years, has been entirely human.

2 - Google self-driving cars are timid.

        The car we rode in did not strike me as dangerous. It drove slowly and deliberately, and I got the impression that it’s more likely to annoy other drivers than to harm them. In the early versions they tested on closed courses, the vehicles were programmed to be highly aggressive. Apparently during these tests, which involved obstacle courses full of traffic cones and inflatable crash-test objects, there were a lot of screeching brakes, roaring engines and terrified interns.

3 - They’re cute.

        Google’s new fleet was intentionally designed to look adorable. Our brains are hardwired to treat inanimate (or animate) objects with greater care, caution, and reverence when they resemble a living thing. By turning self-driving cars into an adorable Skynet Marshmallow Bumper Bots, Google hopes to spiritually disarm other drivers. I also suspect the cuteness is used to quell some of the road rage that might emerge from being stuck behind one of these things. They’re intended as moderate-distance couriers, not openroad warriors, so their max speed is 25 miles per hour.

4 - It’s not done and it’s not perfect.

      Some of the scenarios autonomous vehicles have the most trouble with are the same human beings have the most trouble with, such as traversing four-way stops or handling a yellow light. The cars use a mixture of 3D laser-mapping, GPS, and radar to analyze and interpret their surroundings, and the latest versions are fully electric with a range of about 100 miles. Despite the advantages over a human being in certain scenarios, however, these cars still aren’t ready for the real world. They can’t drive in the snow or heavy rain, and there’s a variety of complex situations they do not process well, such as passing through a construction zone. Google is hoping that, eventually, the cars will be able to handle all of this as well (or better) than a human could.

5 - I want this technology to succeed, like… yesterday.

        I’m biased. Earlier this year my mom had a stroke. It damaged the visual cortex of her brain, and her vision was impaired to the point that she’ll probably never drive again. This reduced her from a fully-functional, independent human being with a career and a buzzing social life into someone who is homebound, disabled, and powerless. When discussing self-driving cars, people tend to ask many superficial questions. They ignore that 45% of disabled people in the US still work. They ignore that 95% of a car’s lifetime is spent parked. They ignore how this technology could transform the lives of the elderly, or eradicate the need for parking lots or garages or gas stations. They dismiss the entire concept because they don’t think a computer could ever be as good at merging on the freeway as they are. They ignore the great, big, beautiful picture: that this technology could make our lives so much better.

6 - It wasn’t an exhilarating ride, and that’s a good thing.

        Riding in a self-driving car is not the cybernetic thrill ride one might expect. The car drives like a person, and after a few minutes you forget that you’re being driven autonomously. You forget that a robot is differentiating cars from pedestrians from mopeds from raccoons. You forget that millions of photons are being fired from a laser and interpreting, processing, and reacting to the hand signals of a cyclist. You forget that instead of an organic brain, which has had millions of years to evolve the cognitive ability to fumble its way through a four-way stop, you’re being piloted by an artificial one, which was birthed in less than a decade. The unfortunate part of something this transformative is the inevitable, ardent stupidity which is going to erupt from the general public. Even if in a few years self-driving cars are proven to be ten times safer than human-operated cars, all it’s going to take is one tragic accident and the public is going to lose their minds. There will be outrage. There will be politicizing. There will be hashtags. I say look at the bigger picture. All the self-driving cars currently on the road learn from one another, and possess 40 years of driving experience. And this technology is still in its infancy.


(Adapted from:: <http://theoatmeal.com/blog/google_self_driving_car> . 21/08/2016.)

Consider the following:
1. Drinking before driving. 2. Sending a written message while driving. 3. Sleeping for a short period of time. 4. Hitting the brakes. 5. Speeding up.
According to the text, some human mistakes that happen before or during a car accident are:
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015296 Matemática
Suponha que a quantidade Q de um determinado medicamento no organismo t horas após sua administração possa ser calculada pela fórmula:
Q = 15 . (1/10)2t
sendo Q medido em miligramas. A expressão que fornece o tempo t em função da quantidade de medicamento Q é:
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015295 Matemática

A respeito da função representada no gráfico ao lado, considere as seguintes afirmativas:


1. A função é crescente no intervalo aberto (4,6).

2. A função tem um ponto de máximo em x=1.

3. Esse gráfico representa uma função injetora.

4. Esse gráfico representa uma função polinomial de terceiro grau.

Imagem associada para resolução da questão


Assinale a alternativa correta.

Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015294 Matemática
Um dado comum, com faces numeradas de 1 a 6, é lançado duas vezes, fornecendo dois números a e c, que podem ser iguais ou diferentes. Qual é a probabilidade de a equação ax2 + 4x + c = 0 ter pelo menos uma raiz real?
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015293 Matemática
Considere a reta r de equação y = 2x + 1. Qual das retas abaixo é perpendicular à reta r e passa pelo ponto P = (4,2) ?
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015292 Matemática
O gráfico ao lado representa o consumo de bateria de um celular entre as 10 h e as 16 h de um determinado dia. Supondo que o consumo manteve o mesmo padrão até a bateria se esgotar, a que horas o nível da bateria atingiu 10%? 
Imagem associada para resolução da questão
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015291 Matemática
Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo tamanho e cor). Uma dessas latas estava cheia de tinta até a metade de sua capacidade e a outra estava cheia de tinta até 3/4 de sua capacidade. Ambos decidiram juntar esse excedente e dividir em duas partes iguais, a serem armazenadas nessas mesmas latas. A fração que representa o volume de tinta em cada uma das latas, em relação à sua capacidade, após essa divisão é:
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015290 Matemática
A piscina usada nas competições de natação das Olimpíadas Rio 2016 possui as medidas oficiais recomendadas: 50 metros de extensão, 25 metros de largura e 3 metros de profundidade. Supondo que essa piscina tenha o formato de um paralelepípedo retângulo, qual dos valores abaixo mais se aproxima da capacidade máxima de água que essa piscina pode conter?
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015289 Matemática
O Centro de Estudos, Resposta e Tratamento de Incidentes de Segurança no Brasil (CERT.br) é responsável por tratar incidentes de segurança em computadores e redes conectadas à Internet no Brasil. A tabela ao lado apresenta o número de mensagens não solicitadas (spams) notificadas ao CERT.br no ano de 2015, por trimestre. Qual dos gráficos abaixo representa os dados dessa tabela?
Imagem associada para resolução da questão

Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015288 Matemática
Em um triângulo retângulo, o maior e o menor lado medem, respectivamente, 12 cm e 4 cm. Qual é a área desse triângulo?
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015287 Química
A qualidade de um combustível é caracterizada pelo grau de octanagem. Hidrocarbonetos de cadeia linear têm baixa octanagem e produzem combustíveis pobres. Já os alcanos ramificados são de melhor qualidade, uma vez que têm mais hidrogênios em carbonos primários e as ligações C-H requerem mais energia que ligações C-C para serem rompidas. Assim, a combustão dos hidrocarbonetos ramificados se torna mais difícil de ser iniciada, o que reduz os ruídos do motor. O isoctano é um alcano ramificado que foi definido como referência, e ao seu grau de octanagem foi atribuído o valor 100. A fórmula estrutural (forma de bastão) do isoctano é mostrada ao lado. Imagem associada para resolução da questão
Qual é o nome oficial IUPAC desse alcano?
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015286 Química
Poucos meses antes das Olimpíadas Rio 2016, veio a público um escândalo de doping envolvendo atletas da Rússia. Entre as substâncias anabolizantes supostamente utilizadas pelos atletas envolvidos estão o turinabol e a mestaterona. Esses dois compostos são, estruturalmente, muito similares à testosterona e utilizados para aumento da massa muscular e melhora do desempenho dos atletas.
Imagem associada para resolução da questão




Quais funções orgânicas oxigenadas estão presentes em todos os compostos citados?
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015285 Química
O ácido ascórbico é uma das formas da vitamina C que apresenta propriedade antioxidante. Na indústria de alimentos, ele é largamente utilizado como aditivo para prevenir a oxidação. Uma maneira de analisar a quantidade de ácido ascórbico em bebidas é através de uma reação de oxirredução utilizando iodo. Com base nisso, foi montada uma pilha, conforme ilustração ao lado, contendo eletrodos inertes de platina ligados a um voltímetro. Foram mantidas condições padrão (298 K, 1 atm e 1 mol L -1 ) para o experimento, e no instante em que se fechou o circuito, conectando-se os fios ao voltímetro, o valor de potencial medido foi de 0,48 V. Imagem associada para resolução da questão
Sabendo que o potencial padrão de redução de iodo a iodeto é de E0 = 0,54 V, o potencial padrão da reação abaixo é: Imagem associada para resolução da questão

Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015284 Química
Num experimento, foi montada a aparelhagem mostrada na figura ao lado. Um tubo contendo 20 mL de ar está imerso na água da cuba. Pode-se considerar que a composição do ar é 80% de N2(g) e 20% de O2(g). O NO(g) formado no gerador passa pela mangueira até chegar ao tubo imerso na água, como ilustrado.
Deixou-se o NO(g) borbulhar até que fossem acrescidos ao tubo 4 mL desse gás. Após cessar o fluxo de NO(g), o tubo foi mantido imerso na posição vertical, de modo que seu volume pudesse variar, mantendo a pressão em seu interior igual à pressão exterior, mas sem escape de gás. Após certo tempo, o gás dentro do tubo adquire cor castanha, em função da seguinte reação:
 2 NO(g) + O2 (g) 2NO2 (g) Imagem associada para resolução da questão
A respeito desse experimento, identifique as afirmativas abaixo como verdadeiras (V) ou falsas (F):
( ) O NO(g) é reagente limitante da reação.
( ) Em relação à condição imediata depois de cessado o fluxo, o volume de gás dentro do tubo irá diminuir após o gás ficar castanho.
( ) Em relação à condição imediata depois de cessado o fluxo, a pressão parcial de N2(g) dentro do tubo irá aumentar após o gás ficar castanho.
( ) O valor de pH da água na região A (dentro do tubo) irá diminuir após o gás se tornar castanho.

Assinale a alternativa que apresenta a sequência correta, de cima para baixo.
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015283 Química
Recentemente, foram realizados retratos genéticos e de habitat do mais antigo ancestral universal, conhecido como LUCA. Acredita-se que esse organismo unicelular teria surgido a 3,8 bilhões de anos e seria capaz de fixar CO2, convertendo esse composto inorgânico de carbono em compostos orgânicos.
Para converter o composto inorgânico de carbono mencionado em metano (CH4), a variação do NOX no carbono é de:
Alternativas
Ano: 2016 Banca: UFPR Órgão: PM-PR Prova: UFPR - 2016 - PM-PR - Aspirante |
Q2015282 Química
Em momentos de estresse, as glândulas suprarrenais secretam o hormônio adrenalina, que, a partir da aceleração dos batimentos cardíacos, do aumento da pressão arterial e da contração ou relaxamento de músculos, prepara o organismo para a fuga ou para a defesa.
Dados – M (g mol-1 ): H = 1; C = 12; N = 14; O = 16.

Qual é o valor da massa molar (em g mol-1 ) desse composto? Imagem associada para resolução da questão

Alternativas
Respostas
9441: A
9442: C
9443: C
9444: C
9445: E
9446: A
9447: A
9448: C
9449: E
9450: B
9451: B
9452: C
9453: D
9454: D
9455: A
9456: A
9457: B
9458: A
9459: E
9460: D