Questões Militares
Foram encontradas 11.299 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
“If it had exploded over a city such as Moscow or London, millions of people would have been killed” (lines 12 and 13).
We can conclude from the information in this passage that
Considere a figura a seguir.
Nela está representada a inscrição de uma esfera num cubo que, por sua vez, está inscrito num cone equilátero, de tal forma que uma de suas faces está apoiada na base do cone e os vértices da face oposta estão na lateral do cone.
A projeção ortogonal do vértice do cone à sua base contém dois pontos de tangência da esfera com o cubo.
Se R e r são, respectivamente, as medidas do raio da base
do cone e do raio da esfera, em cm, então
Considere no plano de Argand Gauss os números complexos z = A( cosα + i senα ) w = B( cosβ + i senβ ) conforme gráfico abaixo.
Se w = z4 , então B é igual a
Considere no plano de Argand Gauss os números complexos z = x + yi , em que x e y são números reais e √−1 = i , tais que
É correto afirmar que os pontos P(x, y) , afixos de z, podem formar um
Considere a função real f definida por f (x) = |−| − c + x |+ c| , com c ∈ IR.
Dos gráficos apresentados nas alternativas a seguir, o único que NÃO pode representar a função f é
No gráfico, = 2 e a curva representa a função f(x)= - 2log1/3 x
No polígono ABCD, a soma , em
unidade de medida, é igual a
Para construir um viaduto, a prefeitura de uma cidade precisará desapropriar alguns locais de uma determinada quadra da cidade.
Para identificar o que precisará ser desapropriado, fez-se um esboço da planta dessa quadra no qual os locais foram representados em um plano cartesiano e nomeados de A1 até A10, conforme figura a seguir.
O viaduto estará representado pela região compreendida entre as retas de equações r: −1/2 x −y + 8 = 0 e s: − x − 2y + 10 = 0 .
Um local será inteiramente desapropriado se o viaduto
passar por qualquer trecho de seu território.
Se cada unidade do plano no esboço da planta equivale a
10 m na situação real, então a área total dos locais dessa
quadra que precisará ser desapropriada, em m2
, é igual a
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um circuito ôhmico com capacitância e autoindução desprezíveis. Através de uma superfície fixa delimitada por este circuito (Figura 1) aplica-se um campo magnético cuja intensidade varia no tempo t de acordo com o gráfico mostrado na Figura 2.
Nessas condições, a corrente induzida i no circuito
esquematizado na Figura 1, em função do tempo t, é
melhor representada pelo gráfico
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No circuito abaixo, a bateria possui fem igual a ε e resistência interna r constante e a lâmpada incandescente L apresenta resistência elétrica ôhmica igual a 2r. O reostato R tem resistência elétrica variável entre os valores 2r e 4r.
Ao deslocar o cursor C do reostato de A até B, verifica-se
que o brilho de L
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um dioptro plano constituído de dois meios homogêneos e transparentes de índices de refração n1 = 1 e n2 = 4/3, separados por uma superfície S perfeitamente plana.
No meio de índice de refração n1 encontra-se um objeto pontual B, distante d, da superfície S, assim como, no outro meio encontra-se um objeto idêntico A, também distante d, da superfície do dioptro como mostra a figura abaixo.
A imagem A1 de A é vista por um observador O1 que se encontra no meio n1; por sua vez, a imagem B1 de B é vista por um observador O2 que se encontra no meio n2.
O dioptro plano é considerado perfeitamente estigmático e os raios que saem de A e B são pouco inclinados em relação à vertical que passa pelos dois objetos.
Considere que A e B sejam aproximados verticalmente da
superfície S de uma distância d/2 e suas novas imagens, A2
e B2, respectivamente, sejam vistas pelos observadores O1
e O2.
Nessas condições, a razão dA /dB entre as distâncias, dA e
dB, percorridas pelas imagens dos objetos A e B, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um observador O visualiza uma placa com a inscrição AFA através de um periscópio rudimentar construído com dois espelhos planos E1 e E2 paralelos e inclinados de 45º em relação ao eixo de um tubo opaco, conforme figura abaixo.
Nessas condições, a opção que melhor representa,
respectivamente, a imagem da palavra AFA conjugada pelo
espelho E1 e a imagem final que o observador O visualiza através do espelho E2 é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere uma barra homogênea, retilínea e horizontal fixa em uma de suas extremidades pelo ponto O, e submetida à ação de uma força na outra extremidade, no ponto P, conforme mostra a Figura 1.
A distância entre os pontos O e P vale x, e a ação da força gera um torque M1 na barra, em relação ao ponto de fixação.
Dobrando-se a barra, de acordo com a Figura 2, e aplicando-se novamente a mesma força no ponto P, um novo torque M2 é gerado em relação ao ponto O.
Considere que a barra não possa ser deformada por ação da força .
Nestas condições, a razão M1 /M2 entre os torques gerados
pela força , nas duas configurações apresentadas, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Duas partículas idênticas, A e B, se movimentam ao longo de uma mesma trajetória x, sendo suas posições, em função do tempo, dadas por xA = 2t e xB = 4 + t, respectivamente, com x em metros e t em segundos. Em determinado instante, as partículas, que formam um sistema isolado, sofrem uma colisão parcialmente elástica, com coeficiente de restituição e = 0,5.
Nessas condições e desprezando o deslocamento dessas partículas durante a colisão, quando a partícula A estiver na posição 28 m, a partícula B estará na posição, em m,