Questões Militares Para aeronáutica

Foram encontradas 32.314 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q1805768 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Para determinar o calor específico de um objeto de material desconhecido, de massa igual a 600 g, um professor sugeriu aos seus alunos um experimento que foi realizado em duas etapas.


1ª etapa: no interior de um recipiente adiabático, de capacidade térmica desprezível, colocou-se certa quantidade de água que foi aquecida por uma resistência elétrica R. Utilizando-se de um amperímetro A e de um voltímetro V, ambos ideais, manteve-se a corrente e a voltagem fornecidas por uma bateria em 2 A e 20 V, conforme ilustrado na Figura 1.


Imagem associada para resolução da questão


Com a temperatura θ lida no termômetro T, obteve-se, em função do tempo de aquecimento Δt, o gráfico representado na Figura 2.


Imagem associada para resolução da questão


2ª etapa: repete-se a experiência, desde o início, desta vez, colocando o objeto de material desconhecido imerso na água. Sem alterar a quantidade de água, a corre


Imagem associada para resolução da questão



Considerando que, em ambas as etapas, toda energia elétrica foi dissipada por efeito Joule no resistor R, pode-se concluir que o calor específico do material de que é feito o objeto é, em cal/(g∙°C) igual a

Alternativas
Q1805767 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Uma fonte emite dois tipos de partículas eletricamente carregadas, P1 e P2, que são lançadas no interior de uma região onde atua somente um campo elétrico vertical e uniforme Imagem associada para resolução da questão Essas partículas penetram perpendicularmente ao campo, a partir do ponto A, com velocidade Imagem associada para resolução da questão, indo colidir num anteparo vertical nos pontos S e R, conforme ilustrado na figura.


Imagem associada para resolução da questão


Observando as medidas indicadas na figura acima e sabendo que a partícula P1 possui carga elétrica q1 e massa m1 e que a partícula P2 possui carga elétrica q2 e massa m2, pode-se afirmar que a razão |q1| / |q2| vale

Alternativas
Q1805766 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Considere duas fontes pontuais, F1 e F2, coerentes, separadas por uma certa distância, que emitem ondas periódicas harmônicas de frequência f = 340 Hz em um meio bidimensional, homogêneo e isotrópico. Um sensor de interferência é colocado em um ponto P, que se encontra sobre a mesma mediatriz que o ponto O, pertencente ao segmento que une as fontes F1 e F2, como representa a figura seguinte.


1.png (317×179)


No ponto P, o sensor registra uma interferência construtiva. Posteriormente, este sensor é movido para o ponto O ao longo do segmento Imagem associada para resolução da questão e deslocado para o ponto C, distante 4,25 m da fonte F1. Nesse ponto C, o sensor se posiciona na segunda linha nodal da estrutura de interferência produzida pelas fontes.

Reposicionando o sensor para o ponto Q, distante 0,50 m do ponto C, obtém-se a primeira linha nodal. Nessas condições, a distância x, em metro, entre o ponto Q e o segundo máximo secundário, localizado no ponto R, é igual a 

Alternativas
Q1805763 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Um projétil de massa 2m é disparado horizontalmente com velocidade de módulo v, conforme indica a Figura 1, e se movimenta com essa velocidade até que colide com um pêndulo simples, de comprimento L e massa m, inicialmente em repouso, em uma colisão perfeitamente elástica.


Imagem associada para resolução da questão


Considere que o projétil tenha sido lançado de uma distância muito próxima do pêndulo e que, após a colisão, esse pêndulo passe a oscilar em movimento harmônico simples, como indica a Figura 2, com amplitude A.


Imagem associada para resolução da questão


Desprezando a ação de forças dissipativas, o período de oscilação desse pêndulo, logo após a colisão, é dado por

Alternativas
Q1805762 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Para encher o pneu de sua bicicleta, um ciclista, conforme figura a seguir, dispõe de uma bomba em formato cilíndrico, cuja área de seção transversal (A) é igual a 20 cm2 . A mangueira de conexão (M) é indeformável e tem volume desprezível.


Imagem associada para resolução da questão


O pneu dianteiro da bicicleta tem volume de 2,4 L e possui, inicialmente, uma pressão interna de 0,3 atm. A pressão interna da bomba, quando o êmbolo (E) está todo puxado à altura (H) de 36 cm, é igual a 1 atm (pressão atmosférica normal).


Considere que, durante a calibragem, o volume do pneu permanece constante e que o processo é isotérmico, com temperatura ambiente de 27 ºC.


Nessas condições, para elevar a pressão do pneu até 6,3 atm, o número de repetições que o ciclista deverá fazer, movendo o êmbolo até o final do seu curso, é

Alternativas
Q1805760 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

A umidade relativa do ar fornece o grau de concentração de vapor de água em um ambiente. Quando essa concentração atinge 100% (que corresponde ao vapor saturado) ocorre uma condensação.


A umidade relativa (UR) é obtida fazendo-se uma comparação entre a densidade do vapor d’água presente no ar e a densidade do vapor se este estivesse saturado, ou seja, UR = densidade do vapor d'água presente no ar /densidade do vapor d'água saturado .


A tabela a seguir fornece a concentração máxima de vapor d’água (em g/cm3 ) medida nas temperaturas indicadas.


Imagem associada para resolução da questão


Em um certo dia de temperatura 32 ºC e umidade relativa de 40%, uma pessoa percebe que um copo com refrigerante gelado passa a condensar vapor d’água (fica “suado”).


Nessas condições, a temperatura, em ºC, do copo com o refrigerante era, no máximo,

Alternativas
Q1805757 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Dois blocos, A e B, de dimensões desprezíveis são abandonados, partindo do repouso, do topo de um plano inclinado de 30º em relação à horizontal; percorrendo, depois de um mesmo intervalo de tempo, as distâncias indicadas conforme ilustra a figura seguinte.


Imagem associada para resolução da questão


Sejam µA e µB, os coeficientes de atrito cinético entre a superfície do plano inclinado e os blocos A e B, respectivamente. Considerando μA = 2μB , então μB vale

Alternativas
Q1805755 Física

Na questão de Física, quando necessário, utilize:

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = 1/2

• condutividade térmica do vidro: K = 0,8 W/(m·K)

• 1 atm = 1,0·105 N/m2

• constante universal dos gases: R = 8,0 J/(mol·K)

• 1 L = 1 dm3

• 1 cal = 4 J

• calor específico da água: c = 1 cal/(g·ºC)

•  velocidade da luz no vácuo: c = 3 x 108 m/s

• constante de Planck: h = 6,6 x 10-34 J∙s

• carga elementar (e) = 1,6 x 10-19 C

• 1 Å = 10-10 m

Foram apresentados a um aluno de física, os seguintes gráficos representativos de movimentos retilíneos.


Imagem associada para resolução da questão


Ao analisar os gráficos o aluno percebeu que podem representar um mesmo movimento, os gráficos

Alternativas
Q1805753 Inglês
It’s correct to affirm that the text is
Alternativas
Q1805752 Inglês
Based on the last paragraph, it’s safe to say that
Alternativas
Q1805751 Inglês
Mark the alternative that shows a synonym for down-side (line 105).
Alternativas
Q1805748 Inglês
Mark the option in which the passage expresses a condition.
Alternativas
Q1805746 Inglês
Therefore (line 51) is closest in meaning to
Alternativas
Q1805744 Inglês
A recurring idea in the text is that
Alternativas
Q1805742 Inglês
In the text, the word even (line 31)
Alternativas
Q1805741 Inglês
According to more recent research,
Alternativas
Q1805740 Inglês
Earlier experiments showed that
Alternativas
Q1805739 Inglês
In paragraph 2, the option that fits the gap appropriately in standard language is
Alternativas
Q1805547 Matemática
Considere, no Plano de Argand-Gauss, os números complexos z = x + yi, em que x e y são números reais e i a unidade imaginária.
Sobre a igualdade 2z + z = 9 + 3i, é correto afirmar que
Alternativas
Q1805540 Matemática
Considere o sistema linear Imagem associada para resolução da questão as incógnitas x e y, com m IR A solução desse sistema é o par ordenado (x , y), em que x e y são determinantes de matrizes, tais que Imagem associada para resolução da questão e Imagem associada para resolução da questão
Assim, pode-se afirmar que x + y + m é igual a
Alternativas
Respostas
5761: B
5762: A
5763: B
5764: C
5765: A
5766: C
5767: A
5768: C
5769: B
5770: A
5771: C
5772: B
5773: C
5774: D
5775: A
5776: C
5777: A
5778: B
5779: A
5780: B