Questões Militares
Foram encontradas 3.126 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Considere uma bola de 0,75Kg, que se choca perpendicularmente com uma parede a uma velocidade de 10m/s, e que, após o choque, retorna na mesma direção e mesma velocidade em módulo, ou seja, ocorrendo um choque perfeitamente elástico.
Calcule a intensidade da força atuante na bola, provocada pela parede, supondo que a interação do choque tenha durado um tempo de 0,04 seg.
A figura abaixo representa uma onda estacionária que se forma em um tubo sonoro fechado. Considere a velocidade do som no ar igual a 340m/s.
Assinale a alternativa que representa a frequência do som emitido pelo tubo.
Os comprimentos de onda de maior interesse ecológico abrangem as faixas do ultravioleta, do visível e do infravermelho. Destas, a faixa visível (400 A 700 nm) assume maior importância dada a sua participação no processo fotossintético, classificadas como RFA (Radiação Fotossinteticamente Ativa). Na fotossíntese, a energia radiante é absorvida e transformada em energia de ligação química. Os receptores de radiação da fotossíntese são as clorofilas e os pigmentos acessórios (caroteno e xantofila). Considerando E a energia de um único fóton de frequência f incidente na clorofila e n, o número de fótons envolvidos no processo, para uma energia de 500 kCal, com luz de comprimento de onda de 700 nm, o número de fótons correspondentes será de aproximadamente, considerando:
E = h ˑ ƒ
Constante de Planck → h = 6,62.10-34 Js
1kCal = 4.103J
Velocidade da luz → 3.108 m/s
1nm = 10-9m
A sirene de um carro de polícia emite ondas de 0,34m. O carro se aproxima de um observador em repouso em relação a terra.
Sabendo-se que o som se propaga no ar com velocidade de 340 m/s, é correto afirmar.
Na associação de resistores abaixo, o circuito é submetido a uma diferença de potencial V, entre os pontos A e B, igual a:
Recentemente a legislação brasileira passou a determinar que os veículos trafeguem nas estradas com os faróis baixos acesos durante o dia ou uma outra lâmpada própria para isso, chamada luz diurna. Os carros geralmente possuem duas lâmpadas dos faróis baixos e duas lâmpadas dos faróis altos. Para obedecer a essa legislação, evitar que o usuário esqueça de acender os faróis e para preservar o uso das lâmpadas de farol baixo sem a necessidade da inclusão de lâmpadas extras, um determinado fabricante de automóveis optou pela seguinte solução descrita a seguir. Os carros dessa marca possuem as lâmpadas de farol alto com dois modos diferentes de associação elétrica. No primeiro modo, chamado “farol alto”, as lâmpadas são ligadas em paralelo entre si e à bateria do carro (12 V). As lâmpadas são iguais e dissipam a potência de 60W cada uma. Esse modo está representado na figura I a seguir. No segundo modo, um sistema automatizado foi feito de tal forma que ao ligar o carro, se os faróis estiverem desligados, esse sistema associa as duas lâmpadas de farol alto em série e essa associação é chamada de “modo luz diurna”, representado pela figura II a seguir.
No modo luz diurna, as lâmpadas acendem com um brilho menos intenso, porém o suficiente para obedecer à legislação e não atingem a temperatura do modo farol alto. Sabe-se que a resistência elétrica das lâmpadas é dada pelo filamento de tungstênio e o mesmo apresenta um aumento do valor da resistência elétrica em função da temperatura atingida. Nesse caso, considere que a resistência elétrica de cada lâmpada no modo luz diurna é igual a 75% da resistência elétrica de cada lâmpada no modo farol alto.
Considere as lâmpadas como resistores ôhmicos ao atingir cada
patamar de temperatura, ou seja, em cada uma das condições
descritas no enunciado. E com base nisso assinale a alternativa que
indica corretamente o valor de potência elétrica dissipada, em W,
em cada lâmpada quando estiver no modo luz diurna.
No sistema mostrado na figura a seguir, a polia e o fio são ideais (massas desprezíveis e o fio inextensível) e não deve ser considerado nenhuma forma de atrito. Sabendo-se que os corpos A e B têm massa respectivamente iguais a 4 kg e 2 kg e que o corpo A desce verticalmente a uma aceleração constante de 5 m/s2 , qual o valor do ângulo θ, que o plano inclinado forma com a horizontal?
Adote o módulo da aceleração da gravidade igual a 10 m/s2 .
Um aluno deseja projetar uma imagem reduzida de um objeto num anteparo colocado a uma distância de 30 cm da lente. O objeto está colocado sobre o eixo principal e a uma distância de 60 cm da lente. Para o experimento o aluno dispõe de 4 lentes, A, B, C e D, sendo que todas respeitam a condição de nitidez de Gauss e foram dispostas em uma prateleira onde são informadas suas características, conforme apresentadas na tabela a seguir:
LENTE TIPO DISTÂNCIA FOCAL
A Convergente 20cm
B Convergente 40cm
C Divergente 20cm
D Divergente 40cm
De acordo com as necessidades do experimento, qual das 4 lentes
o aluno deve usar?
Determine o valor em µF da capacitância equivalente entre os pontos a e b da associação de capacitores abaixo:
Obs.: C = 30µF
Um raio de luz monocromático incide, segundo um ângulo de 60° com a normal (N), numa lâmina de faces paralelas, que está imersa no ar e sobre uma mesa, conforme a figura. Sabe-se que o índice de refração do ar vale 1 e que o raio de luz, após refratar na primeira face da lâmina, reflete na segunda face, de tal forma que o raio refletido forma com esta face um ângulo de 60°.
Assinale, dentre as alternativas a seguir, aquela que apresenta o valor do índice de refração do material do qual a lâmina é constituída.
Um ponto material está sujeito simultaneamente a ação de duas forças perpendiculares de intensidades F1 e F2, conforme mostrado na figura a seguir. O ângulo θ tem valor igual a 30° e a força tem intensidade igual a 7 N. Portanto, a força resultante tem intensidade, em N, igual a _____.
Uma amostra de um gás ideal sofre a transformação termodinâmica do estado A para o estado B representada no gráfico P (pressão) em função de T (temperatura) representada a seguir:
Entre as alternativas, assinale aquela que melhor representa o
gráfico P em função de V (volume) correspondente a
transformação termodinâmica de A para B.
Um professor cronometra o tempo “tS” que um objeto (considerado um ponto material) lançado a partir do solo, verticalmente para cima e com uma velocidade inicial, leva para realizar um deslocamento ΔxS até atingir a altura máxima. Em seguida, o professor mede, em relação à altura máxima, o deslocamento de descida ΔxD ocorrido em um intervalo de tempo igual a 1/4 de “tS” cronometrado inicialmente. A razão é igual a ______.
Considere o módulo da aceleração da gravidade constante e que, durante todo o movimento do objeto, não há nenhum tipo de atrito.
Um jogador de basquete lança manualmente de uma altura “h” uma bola com uma velocidade de módulo igual a v0 e com um ângulo em relação a horizontal igual a θ, conforme o desenho. No mesmo instante, o jogador sai do repouso e inicia um movimento horizontal, retilíneo uniformemente variado até a posição final xF , conforme o desenho.
Considere que, durante todo o deslocamento, a bola não sofre
nenhum tipo de atrito e que nesse local atua uma gravidade de
módulo igual a “g”. A aceleração horizontal necessária que o
jogador deve ter para alcançar a bola quando a mesma retorna a
altura de lançamento “h” com a qual iniciou, é corretamente
expressa por ____.
Centro de Massa (CM) é definido como o ponto geométrico no qual se pode considerar toda a massa do corpo, ou do sistema físico, em estudo. Na figura a seguir, tem-se três partículas A, B e C contidas em um mesmo plano e de massas, respectivamente, iguais a 1 kg, 2 kg e 2 kg. As coordenadas, em metros, de cada partícula são dadas pelos eixos coordenados x e y, dispostas no gráfico da figura. Portanto, as coordenadas do centro de massa do sistema, na sequência (xCM, yCM), será ______ .
De acordo com o Anuário Nacional de Emissões de Vapores Combustíveis de Automóveis, em 1989 cada veículo leve emitia 5 g/dia de gasolina na forma de vapor para a atmosfera. Os últimos dados de 2012 do anuário, indicam que cada veículo leve emite apenas 0,15 g/dia de gasolina, na forma de vapor para a atmosfera. A diminuição na quantidade de combustível emitido para a atmosfera se deve a presença nos carros atuais de um dispositivo chamado cânister que absorve a maior parte dos vapores de gasolina que seriam emitidos para a atmosfera durante a exposição do carro parado ao sol e depois os injeta diretamente na câmara de combustão durante o funcionamento do motor. A quantidade de calor necessária para vaporizar a gasolina absorvida pelo cânister por dia é, em joules, igual a ________.
Considere:
1 - o calor latente de vaporização do combustível igual a 400 J/g;
2 - a gasolina de 1989 idêntica a utilizada em 2012.
Num pêndulo cônico uma pequena esfera de massa igual a 2 kg está suspensa por um fio ideal, de massa desprezível e com 4 m de comprimento. Sabendo que a esfera descreve movimento circular uniforme, com o centro em C, qual o valor da velocidade angular desse movimento, em rad/s?
Adote o módulo da aceleração da gravidade no local igual a 10 m/s2 .