Questões Militares Comentadas para ita

Foram encontradas 131 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q754384 Química

                                    CONSTANTES 

                                         DEFINIÇÕES 



O diagrama de van Arkel-Ketelar apresenta uma visão integrada das ligações químicas de compostos binários, representando os três tipos clássicos de ligação nos vértices de um triângulo. Os vértices esquerdo e direito da base correspondem, respectivamente, aos elementos menos e mais eletronegativos, enquanto o vértice superior do triângulo representa o composto puramente iônico. Com base no diagrama, assinale a opção que apresenta o composto binário de maior caráter covalente. Imagem associada para resolução da questão

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677454 Português

No último livro que publicou em vida, Teia (1996), a escritora Orides Fontela escreveu o poema ao lado.

Imagem associada para resolução da questão

Podemos afirmar que:

I. nem a parte I nem a II indicam que o pássaro “joão-de-barro” pode ser visto como metáfora de um determinado tipo social.

II. apenas a parte III sugere que o trabalho feito pelo joão-de-barro aproxima-se daquele feito por um operário.

III. o poema, em seu todo, aproxima metaforicamente o “joão-de-barro” de um trabalhador brasileiro (um “João”, como o título indica).

IV. como no caso do pássaro, também para o operário vale a idéia de que o homem faz o trabalho e o trabalho faz o homem.

Estão corretas apenas as afirmações:

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677450 Literatura

Na obra Quaderna (1960), João Cabral de Melo Neto incluiu um conjunto de textos, intitulado “Poemas da cabra”, cujo tema é o papel desse animal no universo social e cultural nordestino. Um desses poemas é reproduzido ao lado: 


Um núcleo de cabra é visível

por debaixo de muitas coisas.

Com a natureza da cabra

Outras aprendem sua crosta.


Um núcleo de cabra é visível

em certos atributos roucos

que têm as coisas obrigadas

a fazer de seu corpo couro.


A fazer de seu couro sola.

a armar-se em couraças, escamas:

como se dá com certas coisas

e muitas condições humanas.


Os jumentos são animais

que muito aprenderam da cabra.

O nordestino, convivendo-a,

fez-se de sua mesma casta

                                     

Acerca desse poema, NÃO se pode afirmar que: 

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677448 Português

Qual o dito popular que se aplica à situação mostrada na tira abaixo? 

Imagem associada para resolução da questão

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677432 Inglês

     In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.

     For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.

     How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.

     In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.

(…)       

Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12. 

Indique a opção em que a reescrita do trecho “Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, …” (parágrafo 1) está correta e mantém o mesmo significado do texto.
Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677431 Inglês

     In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.

     For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.

     How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.

     In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.

(…)       

Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12. 

Assinale a opção que, de acordo com o texto, contempla somente as áreas para as quais as pesquisas de Keller e Segel contribuíram.
Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677430 Inglês

     In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.

     For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.

     How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.

     In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.

(…)       

Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12. 

De acordo com o texto, Evelyn Fox Keller

I. tornou-se PhD em Física pela Universidade de Harvard e foi a pioneira nos estudos sobre teoria de sistemas complexos.

II. acreditava na importância da Matemática não apenas para o estudo da Física, mas também da Biologia.

III. Influenciou as pesquisas do matemático Lee Segel, levando-o a se interessar pelo comportamento dos slime molds.

Está(ão) correta(s)

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677429 Inglês

     In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.

     For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.

     How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.

     In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.

(…)       

Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12. 

Em sua pesquisa, Toshiyuki Nakagaki

I. colocou um slime mold num labirinto com quatro saídas.

II. treinou um slime mold a sair de um labirinto pelo caminho mais curto.

III. colocou alimentos em todas as saídas do labirinto para atrair o slime mold.

Está(ão) correta(s)

Alternativas
Ano: 2009 Banca: ITA Órgão: ITA Prova: ITA - 2009 - ITA - Aluno - Português e Inglês |
Q677428 Inglês

     In August of 2000, a Japanese scientist named Toshiyuki Nakagaki announced that he had trained an amoebalike organism called slime mold to find the shortest route through a maze. Nakagaki had placed the mold in a small maze comprising four possible routes and planted pieces of food at two of the exits. Despite its being an incredibly primitive organism (a close relative of ordinary fungi) with no centralized brain whatsoever, the slime mold managed to plot the most efficient route to the food, stretching its body through the maze so that it connected directly to the two food sources. Without any apparent cognitive resources, the slime mold had “solved” the maze puzzle.

     For such a simple organism, the slime mold has an impressive intellectual pedigree. Nakagaki’s announcement was only the latest in a long chain of investigations into the subtleties of slime mold behavior. For scientists trying to understand systems that use relatively simple components to build higher-level intelligence, the slime mold may someday be seen as the equivalent of the finches and tortoises that Darwin observed on the Galapagos Islands.

     How did such a lowly organism come to play such an important scientific role? That story begins in the late sixties in New York City, with a scientist named Evelyn Fox Keller. A Harvard Ph.D. in physics, Keller had written her dissertation on molecular biology, and she had spent some time exploring the nascent field of “non-equilibrium thermodynamics”, which in later years would come to be associated with complexity theory. By 1968, she was working as an associate at Sloan-Kettering in Manhattan, thinking about the application of mathematics to biological problems. Mathematics had played such a tremendous role in expanding our understanding of physics, Keller thought – so perhaps it might also be useful for understanding living systems.

     In the spring of 1968, Keller met a visiting scholar named Lee Segel, an applied mathematician who shared her interests. It was Segel who first introduced her to the bizarre conduct of the slime mold, and together they began a series of investigations that would help transform not just our understanding of biological development but also the disparate worlds of brain science, software design, and urban studies.

(…)       

Johson, Steven. Emergence. Peguin Books Ltd. 2001, pp. 11-12. 

Assinale a opção CORRETA.
Alternativas
Q594529 Português

O efeito de humor da tirinha abaixo se deve.

Imagem associada para resolução da questão

Quino

Alternativas
Q594528 Português
A questão  refere-se ao texto seguinte, extraído do livro Raízes do Brasil, de Sérgio Buarque de Holanda, cuja primeira edição é de 1936.
                     Texto 2
 
                                              (Sérgio Buarque de Holanda. Raízes do Brasil. Rio de Janeiro: José Olympio, 1984, p. 50-51)
O emprego das aspas em “inteligência” (linha 10) e “talento” (linha 11) tem a função de:
I. realçar ironicamente essas palavras.
II. retomar uma explicação dada anteriormente.
III. destacar que essas palavras não são peculiares ao estilo do autor.
Está(ão) correta(s) apenas:
Alternativas
Q594527 Português
A questão  refere-se ao texto seguinte, extraído do livro Raízes do Brasil, de Sérgio Buarque de Holanda, cuja primeira edição é de 1936.
                     Texto 2
 
                                              (Sérgio Buarque de Holanda. Raízes do Brasil. Rio de Janeiro: José Olympio, 1984, p. 50-51)
Conforme a norma padrão da Língua Portuguesa, o emprego de vírgulas é opcional em:
Alternativas
Q569666 Português
Considere o primeiro parágrafo do Texto 2 (linhas 1 a 5) e a tirinha abaixo. 

                  Imagem associada para resolução da questão

O par de pronomes que expressa a dicotomia dos conjuntos tribos/navegantes e tribos vizinhas/não navegantes é
Alternativas
Q546063 Física
Considere dois satélites artificiais S e T em torno da Terra. S descreve uma órbita elíptica com semieixo maior a, e T, uma órbita circular de raio a, com os respectivos vetores posição Imagem associada para resolução da questão e Imagem associada para resolução da questão com origem no centro da Terra. É correto afirmar que
Alternativas
Q546062 Física

O módulo de Young de um material mede sua resistência a deformações causadas por esforços externos. Numa parede vertical, encontra-se engastado um sólido maciço de massa específica ρ e módulo de Young E, em formato de paralelepípedo reto, cujas dimensões são indicadas na figura. Com base nas correlações entre grandezas físicas, assinale a alternativa que melhor expressa a deflexão vertical sofrida pela extremidade livre do sólido pela ação do seu próprio peso.Imagem associada para resolução da questão

Alternativas
Q546000 Português
Considere o poema abaixo, “A cantiga", de Adélia Prado:

 
Imagem associada para resolução da questão
Acerca desse poema, é INCORRETO afirmar que

Alternativas
Q545998 Português

O poema abaixo, “Gioconda (Da Vinci)", de Carlos Drummond de Andrade, refere-se a uma célebre tela renascentista:

Imagem associada para resolução da questão
NÃO se pode afirmar que o poema 




Alternativas
Ano: 2010 Banca: Aeronáutica Órgão: ITA Prova: Aeronáutica - 2010 - ITA - Aluno - Física |
Q545911 Física
Caso necessário, use os seguintes dados:
Aceleração da gravidade = 10 m /s²  
Velocidade de som no ar = 340 m /s 
Densidade da água = 1,0 g/cm ³
Comprimento de onda médio da luz = 570 nm
Um prisma regular hexagonal homogêneo com peso de 15 X e aresta da base de 2,0 m 6 mantido de pé graças ao apoio de um dos seus vértices da base inferior (ver figura) e à ação de uma força vertical de suspensão de 10 N (não mostrada), Nessas condições, o ponto de aplicação da força na base superior do prisma encontra-se

Imagem associada para resolução da questão


Alternativas
Ano: 2010 Banca: Aeronáutica Órgão: ITA Prova: Aeronáutica - 2010 - ITA - Aluno - Física |
Q545906 Física
Caso necessário, use os seguintes dados:
Aceleração da gravidade = 10 m /s²  
Velocidade de som no ar = 340 m /s 
Densidade da água = 1,0 g/cm ³
Comprimento de onda médio da luz = 570 nm
Sobre uma mesa sem atrito, uma bola de massa M é presa por duas molas alinhadas, de constante de mola k e comprimento natural é l₀ , fixadas nas extremidades da mesa. Então, a bola é deslocada a uma distância x na direção perpendicular à linha inicial das molas, como mostra a figura, sendo solta a seguir. Obtenha a aceleração da bola, usando a aproximação (1 + a)α = 1 + αα.

Imagem associada para resolução da questão


Alternativas
Q545527 Física
Quando precisar use os seguintes valores para as constantes: 1 ton de TNT = 4,0 x 109 J. Aceleração da gravidade g = 10 m /s². 1 atm = 10⁵ Pa. Massa específica do ferro ρ = 8000 kg/m³ . Raio da Terra R = 6400 km. Permeabilidade magnética do vácuo μ₀  = 4Π x 10⁻⁷ N /A².
A figura mostra uma região espacial de campo elétrico uniforme de módulo E = 20 N/C. Uma carga Q = 4 C é deslocada com velocidade constante ao longo do perímetro do quadrado de lado L = 1 m, sob ação de uma força F igual e contrária à força coulombiana que atua na carga Q. Considere, então, as seguintes afirmações:

I. O trabalho da força F para deslocar a carga Q do ponto 1 para o ponto 2 é o mesmo dispendido no seu deslocamento ao longo do caminho fechado 1-2-3-4-1.

II. O trabalho da força F para deslocar a carga Q de 2 para 3 é maior que para deslocá-la da 1 para 2.

III. É nula a soma do trabalho da força F  para deslocar a carga Q da 2 para 3 com seu trabalho para deslocá-la de 4 para 1.

Então, pode-se afirmar que

Imagem associada para resolução da questão


Alternativas
Respostas
101: E
102: E
103: B
104: C
105: B
106: C
107: B
108: D
109: B
110: E
111: A
112: C
113: D
114: C
115: D
116: A
117: D
118: C
119: E
120: A