Questões Militares
Para aspirante da aeronáutica
Foram encontradas 1.021 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
O ozônio (O3) é naturalmente destruído na estratosfera superior pela radiação proveniente do Sol.
Para cada molécula de ozônio que é destruída, um átomo de oxigênio (O) e uma molécula de oxigênio (O2) são formadas, conforme representado abaixo:
Sabendo-se que a energia de ligação entre o átomo de
oxigênio e a molécula O2 tem módulo igual a 3,75 eV, então
o comprimento de onda dos fótons da radiação necessária
para quebrar uma ligação do ozônio e formar uma molécula
O2 e um átomo de oxigênio vale, em nm,
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um circuito ôhmico com capacitância e autoindução desprezíveis. Através de uma superfície fixa delimitada por este circuito (Figura 1) aplica-se um campo magnético cuja intensidade varia no tempo t de acordo com o gráfico mostrado na Figura 2.
Nessas condições, a corrente induzida i no circuito
esquematizado na Figura 1, em função do tempo t, é
melhor representada pelo gráfico
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
No circuito abaixo, a bateria possui fem igual a ε e resistência interna r constante e a lâmpada incandescente L apresenta resistência elétrica ôhmica igual a 2r. O reostato R tem resistência elétrica variável entre os valores 2r e 4r.
Ao deslocar o cursor C do reostato de A até B, verifica-se
que o brilho de L
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere um dioptro plano constituído de dois meios homogêneos e transparentes de índices de refração n1 = 1 e n2 = 4/3, separados por uma superfície S perfeitamente plana.
No meio de índice de refração n1 encontra-se um objeto pontual B, distante d, da superfície S, assim como, no outro meio encontra-se um objeto idêntico A, também distante d, da superfície do dioptro como mostra a figura abaixo.
A imagem A1 de A é vista por um observador O1 que se encontra no meio n1; por sua vez, a imagem B1 de B é vista por um observador O2 que se encontra no meio n2.
O dioptro plano é considerado perfeitamente estigmático e os raios que saem de A e B são pouco inclinados em relação à vertical que passa pelos dois objetos.
Considere que A e B sejam aproximados verticalmente da
superfície S de uma distância d/2 e suas novas imagens, A2
e B2, respectivamente, sejam vistas pelos observadores O1
e O2.
Nessas condições, a razão dA /dB entre as distâncias, dA e
dB, percorridas pelas imagens dos objetos A e B, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Um observador O visualiza uma placa com a inscrição AFA através de um periscópio rudimentar construído com dois espelhos planos E1 e E2 paralelos e inclinados de 45º em relação ao eixo de um tubo opaco, conforme figura abaixo.
Nessas condições, a opção que melhor representa,
respectivamente, a imagem da palavra AFA conjugada pelo
espelho E1 e a imagem final que o observador O visualiza através do espelho E2 é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Considere uma barra homogênea, retilínea e horizontal fixa em uma de suas extremidades pelo ponto O, e submetida à ação de uma força na outra extremidade, no ponto P, conforme mostra a Figura 1.
A distância entre os pontos O e P vale x, e a ação da força gera um torque M1 na barra, em relação ao ponto de fixação.
Dobrando-se a barra, de acordo com a Figura 2, e aplicando-se novamente a mesma força no ponto P, um novo torque M2 é gerado em relação ao ponto O.
Considere que a barra não possa ser deformada por ação da força .
Nestas condições, a razão M1 /M2 entre os torques gerados
pela força , nas duas configurações apresentadas, é
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
Duas partículas idênticas, A e B, se movimentam ao longo de uma mesma trajetória x, sendo suas posições, em função do tempo, dadas por xA = 2t e xB = 4 + t, respectivamente, com x em metros e t em segundos. Em determinado instante, as partículas, que formam um sistema isolado, sofrem uma colisão parcialmente elástica, com coeficiente de restituição e = 0,5.
Nessas condições e desprezando o deslocamento dessas partículas durante a colisão, quando a partícula A estiver na posição 28 m, a partícula B estará na posição, em m,
Na questão de Física, quando necessário, use:
• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg
• massa atômica do hélio: mHe = 6,65 ⋅10 –27 kg
• velocidade da luz no vácuo: c = 3 ⋅10 8 m/s
• constante de Planck: h = 6 ⋅10 –34 J⋅s
• 1 eV = 1,6 ⋅10 –19 J
• constante eletrostática do vácuo: k0 = 9,0 ⋅10 9 N⋅m 2 / C2
• aceleração da gravidade: g = 10 m/s2
• cos 30º = sen 60º = √3/2
• cos 60º = sen 30º = 1/2
• cos 45º = sen 45º = √2/2
A partir do instante t0 = 0, uma partícula com velocidade inicial v0 é uniformemente acelerada.
No instante t, a aceleração cessa e a partícula passa a se movimentar com velocidade constante v. Do instante 2t ao instante 4t, uma nova aceleração constante atua sobre a partícula, de tal forma que, ao final desse intervalo, sua velocidade vale -v.
Nessas condições, a velocidade média da partícula, no intervalo de 0 a 4t, é igual a
Considere a figura a seguir.
Nela está representada a inscrição de uma esfera num cubo que, por sua vez, está inscrito num cone equilátero, de tal forma que uma de suas faces está apoiada na base do cone e os vértices da face oposta estão na lateral do cone.
A projeção ortogonal do vértice do cone à sua base contém dois pontos de tangência da esfera com o cubo.
Se R e r são, respectivamente, as medidas do raio da base
do cone e do raio da esfera, em cm, então
Sequências têm relevância para estudos em matemática, mas também habitam o imaginário das pessoas na observação de possíveis coincidências.
Um exemplo foi a data de 02 de fevereiro deste ano de 2020.
Esse foi o 33° dia do ano e estava a 333 dias do fim de 2020.
Além disso, 02/02/2020 é uma capicua, ou seja, uma sequência de números que tanto pode ser lida da direita para a esquerda como da esquerda para direita sem alteração de significado.
Considere todas as combinações numéricas capicuas no formato DD/MM/AAAA, em que DD é dia com dois algarismos, MM é mês com dois algarismos e AAAA é ano com quatro algarismos.
A diferença entre o número de capicuas possíveis de 01 de janeiro de 2 000 a 31 de dezembro de 2 999 e de 01 de janeiro de 3 000 a 31 de dezembro de 3 999, nessa ordem, é um número do intervalo
O jogo árabe chamado Quirkat ou Al-Quirg é semelhante ao jogo de damas moderno, no qual há um tabuleiro de 25 casas (5x5)
Esse jogo foi mencionado na obra Kitab Al-Aghani do século X. O Al-Quirg era também o nome para o jogo que atualmente é conhecido como trilha.
Certo dia, um caixeiro viajante apresentou esse jogo a um rei que ficou encantado com ele e decidiu que iria comprá-lo. Pediu ao viajante que colocasse preço no produto.
O caixeiro disse:
“ __ Vossa Majestade, posso lhe vender o jogo por uma simples barganha! Basta me dar 1 grão de milho para a 1ª casa do jogo, 2 grãos de milho para a 2ª casa do jogo, 4 grãos de milho para a 3ª casa do jogo, 8 grãos de milho para a 4ª casa do jogo e assim por diante até a 25ª casa do tabuleiro!”
O rei, imediatamente, ordenou o pagamento para o caixeiro viajante em troca do jogo que tanto lhe agradou.
Levando em consideração que o peso médio de um grão de
milho seja de 0,30g pode-se afirmar que
Considere a função real f definida por f (x) = |−| − c + x |+ c| , com c ∈ IR.
Dos gráficos apresentados nas alternativas a seguir, o único que NÃO pode representar a função f é
Fevereiro de 2020 destacou-se por uma quantidade expressiva de chuva em quase todo território nacional.
Entre os dias 08 e 14, foram registradas significativas concentrações de chuvas na região Sudeste do Brasil.
A atuação da Zona de Convergência do Atlântico Sul (ZCAS), do Vértice Ciclônico de Altos Níveis (VCAN), da Zona de Convergência Intertropical (ZCIT), combinadas com a termodinâmica, proporcionaram áreas de instabilidades, favorecendo acumulados de chuvas significativos.
No gráfico a seguir, estão destacadas algumas cidades do Sudeste e a quantidade acumulada de chuva no período acima mencionado.
Para uma melhor visualização e comparação dos dados acima, foi construído um gráfico de setores.
Considere x o ângulo central correspondente à cidade de Barueri no gráfico de setores.
Em relação a x é correto afirmar que
TEXTO III
Mulheres de Atenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Vivem pros seus maridos
Orgulho e raça de Atenas
Quando amadas, se perfumam
Se banham com leite, se
Arrumam
Suas melenas
Quando fustigadas não choram
Se ajoelham, pedem, imploram
Mais duras penas; cadenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Sofrem pros seus maridos
Poder e Força de Atenas
(...)
Elas não têm gosto ou vontade
Nem defeito, nem qualidade
Têm medo apenas
Não têm sonhos, só têm
Presságios
O seu homem, mares,
Naufrágios
Lindas sirenas, morenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Temem por seus maridos
Heróis e amantes de Atenas
As jovens viúvas marcadas
E as gestantes abandonadas
Não fazem cenas
Vestem-se de negro, se
Encolhem
Se conformam e se recolhem
Às suas novenas, serenas
(HOLANDA, Chico Buarque de. Meus caros amigos. LP, 1976.
Phonogram/Philips)
Observe o emprego do conectivo “E” no seguinte enunciado e assinale a alternativa em que ele foi empregado no mesmo sentido.
“É uma santa. Diziam os vizinhos. E D. Eulália apanhando.”
TEXTO III
Mulheres de Atenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Vivem pros seus maridos
Orgulho e raça de Atenas
Quando amadas, se perfumam
Se banham com leite, se
Arrumam
Suas melenas
Quando fustigadas não choram
Se ajoelham, pedem, imploram
Mais duras penas; cadenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Sofrem pros seus maridos
Poder e Força de Atenas
(...)
Elas não têm gosto ou vontade
Nem defeito, nem qualidade
Têm medo apenas
Não têm sonhos, só têm
Presságios
O seu homem, mares,
Naufrágios
Lindas sirenas, morenas
Mirem-se no exemplo
Daquelas mulheres de Atenas
Temem por seus maridos
Heróis e amantes de Atenas
As jovens viúvas marcadas
E as gestantes abandonadas
Não fazem cenas
Vestem-se de negro, se
Encolhem
Se conformam e se recolhem
Às suas novenas, serenas
(HOLANDA, Chico Buarque de. Meus caros amigos. LP, 1976.
Phonogram/Philips)