Questões Militares
Para física
Foram encontradas 3.929 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Um veículo parte do repouso e, após 30 minutos, o motorista registra que foi percorrida uma distância de 30 km. A partir dos dados analise as seguintes afirmativas.
I. A velocidade média do veículo foi de 60 km/h.
II. Para percorrer a distância de 30 km, é necessário imprimir uma velocidade superior à velocidade média do veículo em alguns trechos do trajeto.
III. Durante o trajeto o veículo manteve a aceleração constante.
Com base nelas, assinale a alternativa correta.
Ao aquecer, sob pressão constante, qualquer substância pura que se encontra na fase líquida, ela ferve, ou seja, ocorre o processo de ebulição.
Nesta mudança de fase, é correto afirmar que:
Quanto menos for o ângulo entre os espelhos, maior é o número de imagens obtidas.
Qual dos recipientes, contendo o mesmo líquido, apresenta maior pressão no ponto P?
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
No processo de fotossíntese, as moléculas de clorofila do tipo a nas plantas verdes apresentam um pico de absorção da radiação eletromagnética no comprimento de onda λ = 6,80 x 10−7m. Considere que a formação de glicose (C6H12O6) por este processo de fotossíntese é descrita, de forma simplificada, pela reação:
6CO2 + 6H2O → C6H12O6 + 6O2
Sabendo-se que a energia total necessária para que uma molécula de CO2 reaja é de 2,34 x 10−18J, o
número de fótons que deve ser absorvido para formar 1 mol de glicose é
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Considere um aparato experimental composto de um solenoide com n voltas por unidade de comprimento, pelo qual passa uma corrente I, e uma espira retangular de largura l, resistência R e massa m presa por um de seus lados a uma corda inextensível, não condutora, a qual passa por uma polia de massa desprezível e sem atrito, conforme a figura. Se alguém puxar a corda com velocidade constante v, podemos afirmar que a força exercida por esta pessoa é igual a
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Uma corrente I flui em quatro das arestas do cubo da figura (a) e produz no seu centro um campo magnético de magnitude B na direção y, cuja representação no sitema de coordenadas é (0,B,0). Considerando um outro cubo (figura (b)) pelo qual uma corrente de mesma magnitude I flui através do caminho indicado, podemos afirmar que o campo magnético no centro desse cubo será dado por
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Uma esfera condutora de raio R possui no seu interior duas cavidades esféricas, de raio a e b, respectivamente, conforme mostra a figura. No centro de uma cavidade há uma carga puntual qa e no centro da outra, uma carga também puntual qb, cada qual distando do centro da esfera condutora de x e y, respectivamente. E correto afirmar que
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
A figura mostra três camadas de dois materiais com condutividade σ1 e σ2, respectivamente. Da esquerda para a direita, temos uma camada do material com condutividade σ1, de largura d/2, seguida de uma camada do material de condutividade σ2, de largura d/4, seguida de outra camada do primeiro material de condutividade σ1, de largura d/4. A área transversal é a mesma para todas as camadas e igual a A. Sendo a diferença de potencial entre os pontos a e b igual a V , a corrente do circuito é dada por
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Considere uma balança de braços desiguais, de comprimentos l1 e l2, conforme mostra a figura. No lado esquerdo encontra-se pendurada uma carga de magnitude Q e massa desprezível, situada a uma certa distância de outra carga, q. No lado direito encontra-se uma massa m sobre um prato de massa desprezível. Considerando as cargas como puntuais e desprezível a massa do prato da direita, o valor de q para equilibrar a massa m é dado por
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Uma jovem encontra-se no assento de um carrossel circular que gira a uma velocidade angular constante com período T. Uma sirene posicionada fora do carrossel emite um som de frequência fo em direção ao centro de rotação. No instante t = 0, a jovem está à menor distância em relação à sirene. Nesta situação, assinale a melhor representação da frequência f ouvida pela jovem.
Caso necessário, use os seguintes dados:
Constante gravitacional G =6,67 × 10−11m3/s2kg. Massa do Sol M= 1,99× 1030 kg. Velocidade da luz c = 3× 108m/s. Distância média do centro da Terra ao centro do Sol: 1,5 × 1011 m. Aceleração da gravidade g = 9,8 m/s2 . Raio da Terra: 6380 km. Número de Avogadro: 6,023 × 1023 mol−1 . Constante universal dos gases: 8,31 J/molK. Massa atômica do nitrogênio: 14. Constante de Planck h =6,62× 10−34m2kg/s. Permissividade do vácuo: ε0 = 1/4πk0. Permeabilidade magnética do vácuo: µ0.
Considere o modelo de flauta simplificado mostrado na figura, aberta na sua extremidade D, dispondo de uma abertura em A (próxima à boca), um orifício em B e outro em C. Sendo = 34,00 cm, e a velocidade do som de 340,0 m/s, as frequências esperadas nos casos: (i) somente o orifício C está fechado, e (ii) os orif´ıcios B e C estão fechados, devem ser, respectivamente