Questões Militares
Para física
Foram encontradas 3.929 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Observe a figura a seguir.
O cartão acima é visto por um observador através de uma
lupa (lente esférica biconvexa) de vidro que se encontra
no ar. O cartão é colocado a aproximadamente 20 cm da
lupa cuja distância focal é da ordem de 10 cm. Sendo
assim, marque a opção que apresenta a figura que o
observador vê através da lente.
Observe a figura abaixo.
A figura representa ondas propagando-se numa corda tensa 4 s após o início das oscilações da fonte F que as produz. O comprimento de onda (λ) e a frequência (f) da onda produzida pela fonte F valem, respectivamente:
O Grupamento de Mergulhadores de Combate (GruMeC), subordinado ao Comando da Força de Submarinos da Marinha do Brasil (MB), é uma das mais importantes e respeitadas tropas de operações especiais do mundo, especializada em infiltração, reconhecimento, sabotagem, resgate e destruição de alvos estratégicos. Um MeC, assim como é chamado um membro do GruMeC, equipado com um fuzil de alta precisão e com um equipamento de mergulho de circuito fechado (que não solta bolhas de ar) recebe a missão de se infiltrar e eliminar o inimigo que guarnece um posto de controle.
O MeC mira o seu fuzil a fim de acertar a cabeça do
inimigo conforme mostrado na figura. Considere para tal
desprezível o efeito da gravidade, que o fuzil tenha
funcionado adequadamente mesmo debaixo d’água, que o
tiro disparado poderia ter alcançado o inimigo que se
encontrava bastante próximo e que o projétil, ao passar da
água para o ar, não sofreu desvio algum em termos de
direção. Qual das opções abaixo está relacionada com o
fenômeno óptico mostrado na figura que ilustra esse
enunciado e que deveria ter sido levado em conta pelo
MeC a fim de acertar o alvo?
Um motorista de táxi conversa com um passageiro que está sentado no banco de trás, observando a imagem de seus olhos fornecida pelo espelho plano retrovisor interno. Se o motorista consegue ver no espelho a imagem dos olhos do passageiro, este também consegue ver, no mesmo espelho, a imagem dos olhos do motorista.
Esse fato pode ser explicado utilizando-se:
O resultado da soma abaixo, considerando os algarismos significativos, é:
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Dois recipientes A e B de respectivos volumes VA e VB = βVA , constantes, contem um gás ideal e são conectados por um tubo fino com válvula que regula a passagem do gás, conforme a figura. Inicialmente o gás em A está na temperatura TA sob pressão PA e em B, na temperatura TB sob pressão Pb . A válvula e então aberta até que as pressões finais PAf e PBf alcancem a proporção PAf / PBf = α, mantendo as temperaturas nos seus valores iniciais. Assinale a opcão com a expressão de PAf .
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Um pendulo simples de massa m e haste rígida de comprimento h e articulado em torno de um ponto e solto de uma posição vertical, conforme a Figura 1. Devido a gravidade, o pêndulo gira atingindo uma membrana ligada a um tubo aberto em uma das extremidades, de comprimento L e área da seção transversal S (Figura 2). Após a colisão de reduzida duração, Δt, o pêndulo recua atingindo um ângulo maximo θ (Figura 3). Sejam p a densidade de equilíbrio do ar e c a velocidade do som. Supondo que energia tenha sido transferida somente para a harmônica fundamental da onda sonora plana no tubo, assinale a opção com a amplitude da oscilação das partículas do ar.
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
No livro Teoria do Calor (1871), Maxwell, escreveu referindo-se a um recipiente cheio de ar:
"... iniciando com uma temperatura uniforme, vamos supor que um recipiente é dividido em duas partes por uma divisória na qual existe um pequeno orifício, e que um ser que pode ver as moléculas individualmente abre e fecha esse orifício de tal modo que permite somente a passagem de moléculas rápidas de A para B e somente as lentas de B para A. Assim, sem realização de trabalho, ele aumentará a temperatura de B e diminuirá a temperatura de A em contradição com ... ”.
Assinale a opção que melhor completa o texto de Maxwell.
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Três molas idênticas, de massas desprezíveis e comprimentos naturais ℓ, são dispostas verticalmente entre o solo e o teto a 3ℓ de altura. Conforme a figura, entre tais molas são fixadas duas massas pontuais iguais. Na situação inicial de equilíbrio, retira-se a mola inferior (ligada ao solo) resultando no deslocamento da massa superior de uma distância d1 para baixo, e da inferior, de uma distância d2 também para baixo, alcancando-se nova posição de equilíbrio. Assinale a razao d2 /d1.
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Considere quatro cargas fixadas sobre o eixo x orientado para a direita. Duas delas, - q1 e + q1, separadas por uma distância a1, formam o sistema 1 e as outras duas, -q2 e +q2, separadas por uma distância a2, formam o sistema 2. Considerando que ambos os sistemas estão separados por uma distância r muito maior que a1 e a2, conforme a figura, e que (1 + z)-2 1 — 2z + 3z2 para z << 1, a forca exercida pelo sistema 1 sobre o sistema 2 é
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Um tubo fino de massa 1225g e raio r = 10,0 cm encontra-se inicialmente em repouso sobre um plano horizontal sem atrito. A partir do ponto mais alto, um corpo de massa 71,0g com velocidade inicial zero desliza sem atrito pelo interior do tubo no sentido anti-horário, conforme a figura. Entao, quando na posição mais baixa, o corpo terá uma velocidade relativa ao tubo, em cm/s, igual a
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3
Os pontos no gráfico indicam a velocidade instantánea, quilômetro a quilômetro, de um carro em movimento retilíneo. Por sua vez, o computador de bordo do carro calcula a velocidade média dos últimos 9 km por ele percorridos. Então, a curva que melhor representa a velocidade média indicada no computador de bordo entre os quilômetros 11 e 20 é
Quando precisar use os seguintes valores para as constantes: Constante da gravitação universal G = 7 x 10-11 m3/kg.s2. Aceleraçao da gravidade g = 10 m /s2. Velocidade do som no ar = 340 m/s. Raio da Terra R = 6400 km. Constante dos gases R = 8,3 J/mol.K. Indice adiabatico do ar y = CP/CV = 1,4. Massa molecular do ar Mar = 0,029 kg/mol. Permeabilidade magnetica do vacuo μ0 = 4π x 10-7 N/A2.
Pressão atmosferica 1,0 atm = 100 kPa. Massa específica da agua = 1 ,0 g/cm3