Questões Militares
Para física
Foram encontradas 3.929 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
Uma barra homogênea de grafite no formato de um paralelepípedo, com as dimensões indicadas na figura, é ligada a um circuito elétrico pelos condutores ideais A e B. Neste caso, a resistência elétrica entre os terminais A e B é de____ohms.
Considere:
1) a resistividade do grafite:
2) a barra como um resistor ôhmico.
A figura acima mostra dois geradores de corrente contínua, denominados G1 e G2, que possuem resistências internas R1 e R2 e a mesma tensão induzida E . Os geradores estão conectados a uma resistência R por meio de uma chave S. A resistência R1 é um cilindro não condutor que possui um êmbolo condutor em sua parte superior e que se encontra, inicialmente, totalmente preenchido por um liquido condutor. O êmbolo desce junto com o nível do líquido condutor no interior do cilindro, mantendo a continuidade do circuito. No instante em que a chave S é fechada, o líquido começa a escoar pelo registro cuja vazão volumétrica é Q. Diante do exposto, o instante de tempo t , no qual o gerador G1 fornece 40% da corrente demandada pela carga é:
Dados:
• antes do fechamento da chave S : R1 = 4 R2 ;
• resistividade do líquido condutor: p ; e
• área da base do cilindros A.
Uma partícula elétrica de carga unitária, dotada de massa e inicialmente parada, sofre a ação de um impulso, entrando imediatamente em uma região do espaço na qual o campo magnético é uniforme, passando a realizar um movimento no sistema de coordenadas XYZ, descrito pelas seguintes funções do tempo t :
Considerando todas as grandezas no Sistema Internacional de Unidades, o módulo do campo magnético é:
Dado:
• impulso: 10.
Observação:
• despreze a força gravitacional.
O sistema mostrado na figura gira em torno de um eixo central em velocidade angular constante ω. Dois cubos idênticos, de massa uniformemente distribuída, estão dispostos simetricamente a uma distância r do centro ao eixo, apoiados em superfícies inclinadas de ângulo θ . Admitindo que não existe movimento relativo dos cubos em relação às superfícies, a menor velocidade angular ω para que o sistema se mantenha nessas condições é:
Dados:
• aceleração da gravidade: g ;
• massa de cada cubo: m ;
• aresta de cada cubo: a ; e
• coeficiente de atrito entre os cubos e as superfícies inclinadas: μ .
O sistema mostrado na figura acima encontra-se em equilíbrio estático, sendo composto por seis cubos idênticos, cada um com massa específica μ uniformemente distribuída e de aresta a, apoiados em uma alavanca composta por uma barra rígida de massa desprezível. O comprimento L da barra para que o sistema esteja em equilíbrio é:
Duas partículas A e B, carregadas eletricamente com mesmos valores de cargas positivas, partem da origem em velocidade nula no instante t = 0, e têm suas componentes de aceleração em relação aos eixos X e Y regidas pelas seguintes equações temporais:
O instante t min , onde 0 ≤ t min < 2π , em que a força de repulsão entre as cargas é mínima é
Conforme a figura acima, duas lanternas muito potentes, cilíndricas, com diâmetro D = 4 cm, estão alinhadas
no plano vertical. Ambas possuem lentes nas extremidades, cujos centros ópticos O estão alinhados
verticalmente e cujas distâncias focais são f = 3 cm. Uma das lentes é convergente e a outra é divergente.
Suas lâmpadas geram raios de luz horizontais, que encontram as lentes das respectivas lanternas e são
projetados até um anteparo vertical. Sabendo que a distância entre os centros ópticos das duas lentes é y =
12 cm, a distância máxima x entre os centros ópticos das lentes O e o anteparo, em centímetros, que faz
com que a luz projetada pelas lanternas não se sobreponha é:
A figura acima mostra um circuito formado por quatro resistores e duas baterias. Sabendo que a diferença de potencial entre os terminais do resistor de 1 Ω é zero, o valor da tensão U , em volts, é:
Um veículo de combate tem, como armamento principal, um canhão automático eletromagnético, o qual está municiado com 50 projéteis. Esse veículo se desloca em linha reta, inicialmente, em velocidade constante sobre um plano horizontal. Como o veículo está sem freio e descontrolado, um engenheiro sugeriu executar disparos a fim de reduzir a velocidade do veículo. Após realizar 10 disparos na mesma direção e no mesmo sentido da velocidade inicial do veículo, este passou a se deslocar com metade da velocidade inicial. Diante do exposto, a massa do veículo, em kg, é:
Dados:
• velocidade inicial do veículo: 20 m/s;
• velocidade do projétil ao sair do canhão: 800 m/s; e
• massa do projétil: 2 kg.
Observação:
• não há atrito entre o plano horizontal e o veículo.
Considere uma corda pendurada no teto de uma sala. O intervalo de tempo para um pulso ondulatório percorrer toda a corda é dado por:
Dados:
• comprimento da corda : L;
• densidade linear da corda: μ; e
• aceleração da gravidade: g.
Considere as afirmações abaixo, relativas a uma máquina térmica que executa um ciclo termodinâmico durante o qual há realização de trabalho.
Afirmação I. Se as temperaturas das fontes forem 27° C e 427° C, a máquina térmica poderá apresentar um rendimento de 40%.
Afirmação II. Se o rendimento da máquina for 40% do rendimento ideal para temperaturas das fontes iguais a 27° C e 327° C e se o calor rejeitado pela máquina for 0,8 kJ, o trabalho realizado será 1,8 kJ.
Afirmação III. Se a temperatura de uma das fontes for 727° C e se a razão entre o calor rejeitado pela máquina e o calor recebido for 0,4, a outra fonte apresentará uma temperatura de -23° C no caso de o rendimento da máquina ser 80% do rendimento ideal.
Está(ão) correta(s) a(s) seguinte(s) afirmação(ões):
Como mostra a figura acima, um microfone M está pendurado no teto, preso a uma mola ideal, verticalmente acima de um alto-falante A, que produz uma onda sonora cuja frequência é constante. O sistema está inicialmente em equilíbrio. Se o microfone for deslocado para baixo de uma distância d e depois liberado, a frequência captada pelo microfone ao passar pela segunda vez pelo ponto de equilíbrio será:
Dados:
• frequência da onda sonora produzida pelo alto-falante: f;
• constante elástica da mola: k,
• massa do microfone: m; e
• velocidade do som: vs.
Como mostra a figura, dois corpos de massa m e volume V em equilíbrio estático. Admita que μ é a massa específica do líquido, que não existe atrito entre o corpo e o plano inclinado e que as extremidades dos fios estão ligadas a polias, sendo que duas delas são solidárias, com raios menor e maior r e R , respectivamente. A razão R/r para que o sistema esteja em equilíbrio é:
Como mostra a Figura 1, uma partícula de carga positiva se move em um trilho sem atrito e sofre a interação de forças elétricas provocadas por outras partículas carregadas fixadas nos pontos A, B, C e D. Sabendo que as cargas das partículas situadas em B e D são iguais e que uma parte do gráfico da velocidade da partícula sobre o trilho, em função do tempo, está esboçada na Figura 2, o gráfico completo que expressa a velocidade da partícula está esboçado na alternativa:
Observações:
• r<< d ;
• em t = 0, a partícula que se move no trilho está à esquerda da partícula situada no ponto A;
• considera-se positiva a velocidade da partícula quando ela se move no trilho da esquerda para a
direita.
Conforme a figura acima, um corpo, cuja velocidade é nula no ponto A da superfície circular de raio R, é atingido por um projétil, que se move verticalmente para cima, e fica alojado no corpo. Ambos passam a deslizar sem atrito na superfície circular, perdendo o contato com a superfície no ponto B. A seguir, passam a descrever uma trajetória no ar até atingirem o ponto C, indicado na figura. Diante do exposto, a velocidade do projétil é:
Dados:
• massa do projétil: m ;
• massa do corpo: 9m ; e
• aceleração da gravidade: g .
As fibras ópticas funcionam pelo Princípio da Reflexão Total, que ocorre quando os raios de luz que seguem determinados percursos dentro da fibra são totalmente refletidos na interface núcleo-casca, permanecendo no interior do núcleo. Considerando apenas a incidência de raios meridionais e que os raios refratados para a casca são perdidos, e ainda, sabendo que os índices de refração do ar, do núcleo e da casca são dados, respectivamente, por n0, n1; e n2 ( n1 > n2 > n0), o ângulo máximo de incidência θa , na interface ar-núcleo, para o qual ocorre a reflexão total no interior da fibra é:
Considerações:
• raios meridionais são aqueles que passam pelo centro do núcleo; e
• todas as opções abaixo correspondem a números reais.
Quatro objetos esféricos A, B, C e D, sendo respectivamente suas massas mA, mB, mC e mD, tendo as seguintes relações mA>mB e mB = mC = mD, são lançados dentro de uma piscina contendo um líquido de densidade homogênea. Após algum tempo, os objetos ficam em equilíbrio estático. Os objetos A e D mantêm metade de seus volumes submersos e os objetos C e B ficam totalmente submersos conforme o desenho abaixo.
Sendo VA, VB, VC e VD os volumes dos objetos A, B, C e D, respectivamente, podemos afirmar que
Um operário, na margem A de um riacho, quer enviar um equipamento de peso 500 N para outro operário na margem B.
Para isso ele utiliza uma corda ideal de comprimento L=3m, em que uma das extremidades está amarrada ao equipamento e a outra a um pórtico rígido.
Na margem A, a corda forma um ângulo θ com a perpendicular ao ponto de fixação no pórtico. O equipamento é abandonado do repouso a uma altura de 1,20 m em relação ao ponto mais baixo da sua trajetória. Em seguida, ele entra em movimento e descreve um arco de circunferência, conforme o desenho abaixo e chega à margem B.
Desprezando todas as forças de atrito e considerando o equipamento uma partícula, o módulo da força de tração na corda no ponto mais baixo da trajetória é
Dado: considere a aceleração da gravidade g=10 m/s2