Questões Militares
Para física
Foram encontradas 3.929 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
A teoria cinética dos gases se baseia em quatro postulados; analise-os.
I. O gás é formado por moléculas que se encontram em movimento desordenado e permanente. Cada molécula pode ter velocidade diferente das demais.
II. Cada molécula do gás interage com as outras somente por meio de colisões (forças normais de contato). A única energia das moléculas é a energia cinética.
III. Todas as colisões entre as moléculas e as paredes do recipiente que contêm o gás são perfeitamente elásticas. A energia cinética total se conserva, mas a velocidade de cada molécula pode mudar.
IV. As moléculas são infinitamente pequenas. A maior parte do volume ocupado por um gás é o espaço vazio.
Estão corretas as afirmativas
Analise o circuito esquematizado a seguir.
(Dados: Circuito I – R1 = 3Ω; circuito II – R2 = 8Ω; circuito III – R3 = 24Ω.)
A resistência do equivalente desse circuito é:
Analise as afirmativas a seguir.
I. Em uma expansão isotérmica reversível, o sistema recebe uma quantidade de calor da fonte de aquecimento.
II. Em uma expansão adiabática reversível, o sistema não troca calor com as fontes térmicas (M-N).
III. Em uma compressão isotérmica reversível, o sistema não cede calor para a fonte de resfriamento.
IV. Em uma compressão adiabática reversível, o sistema não troca calor com as fontes térmicas.
V. Numa máquina de Carnot, a quantidade de calor que é fornecida pela fonte de aquecimento e a quantidade cedida à fonte de resfriamento são proporcionais às suas temperaturas absolutas.
Estão corretas apenas as afirmativas.
Um circuito constituído por um gerador de tensão e três resistores R1, R2 e R3 estão representados no gráfico a seguir com seus respectivos valores de tensões e das correntes elétricas. Quando essa associação é submetida a uma tensão constante de 1.400 V e os três resistores estão ligados em série, considerando 1 caloria igual a 4,2 joules, a energia dissipada nos resistores, em ½ minuto, em calorias, será:
O gráfico a seguir mostra um corpo de 1,5 kg que se move horizontalmente com velocidade constante de 10 m/s, num plano e que encontra uma rampa e sobe até atingir a altura máxima de 4,0 metros. No plano não há atrito, somente no início da rampa é que o atrito existe. A quantidade de energia mecânica transformada em energia térmica durante a subida do corpo na rampa é:
(Considere g = 10 m/s.)
Um sistema físico que representa aproximadamente as propriedades de um movimento harmônico simples (MHS) é o pêndulo simples, que é constituído por um objeto de massa m suspenso por um fio ideal (sem massa e não extensível) de comprimento L e cuja outra extremidade é fixa, conforme ilustrado na figura abaixo. O módulo da força restauradora em um pêndulo simples é dado por: F = −mg . tg(θ), em que θ é o ângulo que o fio faz com a direção vertical. Entretanto, a aproximação de MHS só é válida quando o pêndulo executa oscilações de pequena amplitude, o que permite que a força restauradora no pêndulo simples seja diretamente proporcional ao afastamento lateral x do objeto suspenso em relação à posição de equilíbrio.
Considerando as informações acima e com base na teoria dos movimentos
harmônicos simples e do pêndulo simples, julgue o próximo item.
Sabendo-se que a aproximação tg (θ) ≅ sen (θ), justificável para ângulos pequenos, é correto afirmar que a constante de proporcionalidade, ao se considerar que o pêndulo simples executa um MHS, é igual a mg ⁄ L .
Um sistema físico que representa aproximadamente as propriedades de um movimento harmônico simples (MHS) é o pêndulo simples, que é constituído por um objeto de massa m suspenso por um fio ideal (sem massa e não extensível) de comprimento L e cuja outra extremidade é fixa, conforme ilustrado na figura abaixo. O módulo da força restauradora em um pêndulo simples é dado por: F = −mg . tg(θ), em que θ é o ângulo que o fio faz com a direção vertical. Entretanto, a aproximação de MHS só é válida quando o pêndulo executa oscilações de pequena amplitude, o que permite que a força restauradora no pêndulo simples seja diretamente proporcional ao afastamento lateral x do objeto suspenso em relação à posição de equilíbrio.
Considerando as informações acima e com base na teoria dos movimentos
harmônicos simples e do pêndulo simples, julgue o próximo item.
Para se medir, com razoável grau de aproximação, a aceleração da gravidade em determinado ponto da superfície da Terra, é suficiente medir-se o período de um pêndulo simples de comprimento L conhecido.
Um sistema físico que representa aproximadamente as propriedades de um movimento harmônico simples (MHS) é o pêndulo simples, que é constituído por um objeto de massa m suspenso por um fio ideal (sem massa e não extensível) de comprimento L e cuja outra extremidade é fixa, conforme ilustrado na figura abaixo. O módulo da força restauradora em um pêndulo simples é dado por: F = −mg . tg(θ), em que θ é o ângulo que o fio faz com a direção vertical. Entretanto, a aproximação de MHS só é válida quando o pêndulo executa oscilações de pequena amplitude, o que permite que a força restauradora no pêndulo simples seja diretamente proporcional ao afastamento lateral x do objeto suspenso em relação à posição de equilíbrio.
Considerando as informações acima e com base na teoria dos movimentos
harmônicos simples e do pêndulo simples, julgue o próximo item.
Caso a massa m do objeto suspenso seja duplicada, a frequência desse
pêndulo será quatro vezes maior que a anterior.
Uma haste fina, rígida, de massa desprezível e com 0,50 m de
comprimento tem uma de suas extremidades fixada sobre uma mesa
horizontal e pode girar livremente (sem tocar a superfície da mesa)
em torno do ponto fixo. Considere que, na outra extremidade da
haste, esteja preso um objeto de massa m = 4,0 kg, apoiado sobre
a superfície da mesa e, inicialmente, em repouso. Suponha que,
entre o objeto e a mesa, exista atrito, com coeficiente μ = 0,1, e
que, em certo momento, o objeto receba um impulso de 2,0 kg m/s,
perpendicular à direção sobre a qual se estende a haste e
paralelamente à superfície da mesa, comece a girar e pare após
certo instante. Com base nessa situação, julgue o item que se
segue. Considere a aceleração da gravidade g = 10,0 m/s2
e
π = 3,14.
O movimento resultante será circular e uniformemente
desacelerado.
Uma haste fina, rígida, de massa desprezível e com 0,50 m de
comprimento tem uma de suas extremidades fixada sobre uma mesa
horizontal e pode girar livremente (sem tocar a superfície da mesa)
em torno do ponto fixo. Considere que, na outra extremidade da
haste, esteja preso um objeto de massa m = 4,0 kg, apoiado sobre
a superfície da mesa e, inicialmente, em repouso. Suponha que,
entre o objeto e a mesa, exista atrito, com coeficiente μ = 0,1, e
que, em certo momento, o objeto receba um impulso de 2,0 kg m/s,
perpendicular à direção sobre a qual se estende a haste e
paralelamente à superfície da mesa, comece a girar e pare após
certo instante. Com base nessa situação, julgue o item que se
segue. Considere a aceleração da gravidade g = 10,0 m/s2
e
π = 3,14.
Durante todo o movimento do referido objeto, a aceleração
centrípeta é constante.
Uma haste fina, rígida, de massa desprezível e com 0,50 m de
comprimento tem uma de suas extremidades fixada sobre uma mesa
horizontal e pode girar livremente (sem tocar a superfície da mesa)
em torno do ponto fixo. Considere que, na outra extremidade da
haste, esteja preso um objeto de massa m = 4,0 kg, apoiado sobre
a superfície da mesa e, inicialmente, em repouso. Suponha que,
entre o objeto e a mesa, exista atrito, com coeficiente μ = 0,1, e
que, em certo momento, o objeto receba um impulso de 2,0 kg m/s,
perpendicular à direção sobre a qual se estende a haste e
paralelamente à superfície da mesa, comece a girar e pare após
certo instante. Com base nessa situação, julgue o item que se
segue. Considere a aceleração da gravidade g = 10,0 m/s2
e
π = 3,14.
O trabalho total efetuado pela força de atrito é igual a 0,5 J.
A lei dos nós estabelece que a soma das correntes que chegam e saem de um nó deve ser nula. A lei das malhas estabelece que a soma das diferenças de potencial em um circuito simples fechado deve ser nula. Considere o circuito elétrico abaixo, com duas malhas, indicadas pelos números I (à esquerda) e II (à direita), percorridas por correntes i1, i2 e i3.
Considerando nesse circuito, o valor da força eletromotriz fornecida
pelo gerador igual a ε = 10 V e que os valores das resistências ε
elétricas R1 , R2 e R3 sejam iguais, em cada trecho do circuito,
respectivamente a 1Ω , 2Ω e 3Ω , julgue o item subsequente.
A lei dos nós estabelece que a soma das correntes que chegam e saem de um nó deve ser nula. A lei das malhas estabelece que a soma das diferenças de potencial em um circuito simples fechado deve ser nula. Considere o circuito elétrico abaixo, com duas malhas, indicadas pelos números I (à esquerda) e II (à direita), percorridas por correntes i1, i2 e i3.
Considerando nesse circuito, o valor da força eletromotriz fornecida
pelo gerador igual a ε = 10 V e que os valores das resistências ε
elétricas R1 , R2 e R3 sejam iguais, em cada trecho do circuito,
respectivamente a 1Ω , 2Ω e 3Ω , julgue o item subsequente.
A lei dos nós estabelece que a soma das correntes que chegam e saem de um nó deve ser nula. A lei das malhas estabelece que a soma das diferenças de potencial em um circuito simples fechado deve ser nula. Considere o circuito elétrico abaixo, com duas malhas, indicadas pelos números I (à esquerda) e II (à direita), percorridas por correntes i1, i2 e i3.
Considerando nesse circuito, o valor da força eletromotriz fornecida
pelo gerador igual a ε = 10 V e que os valores das resistências ε
elétricas R1 , R2 e R3 sejam iguais, em cada trecho do circuito,
respectivamente a 1Ω , 2Ω e 3Ω , julgue o item subsequente.
O sentido real da corrente i2 é contrário ao adotado no
diagrama do circuito apresentado.