Questões de Concurso
Comentadas sobre gravitação universal em física
Foram encontradas 57 questões
As imagens mostram que todo corpo colocado na superfície terrestre sofre a influência da força peso, que atrai esses corpos para o centro da Terra. Considerando a Teoria de Newton sobre a “aceleração da gravidade na superfície da Terra”, a força de atração gravitacional que existe entre a Terra e o corpo é dada pela equação:
Em relação ao movimento dos objetos, julgue o item subsequente.
Considere que, em virtude da atração gravitacional, dois
asteroides, A e B, de massas equivalentes no espaço
interplanetário, atraiam-se e choquem-se, de modo que, se
uma pessoa estivesse em A, veria o asteroide B caindo sobre
sua cabeça; se estivesse em B, teria a mesma sensação.
Nessa situação hipotética, esse efeito ocorre devido à energia
potencial gravitacional do asteroide A, supondo-se que ele
caia de uma altura h do asteroide B.
( ) As grandes esferas de cristal encaixadas e girando uma dentro da outra, que são defendidas por Ptolomeu, não são refutadas por Copérnico. A própria teoria de Copérnico consistia apenas numa versão modificada do sistema ptolomaico transpondo os papéis da Terra e do Sol. ( ) Sob o aspecto da matemática e da quantidade de epiciclos que devem ser usados para explicar os movimentos dos corpos celestes Copérnico não constrói uma teoria tão diferente. Seu trabalho possui cálculos complexos e um número de círculos maior que do Almagesto. ( ) O modelo de Copérnico retira toda a complexidade dos movimentos aparentes de retrogressão e progressão observados para os planetas. Consegue atribuí-los completamente à Terra (de onde são observados os planetas) por conta de seu deslocamento em torno do Sol. Com isso, as irregularidades aparentes no céu ganham um modelo universal, e a autoridade do modelo ptolomaico (da astronomia matemática) é superada pela astronomia física. ( ) As navegações e as tentativas de reforma do calendário eram grandes motivações para se querer estudar os corpos celestes na época de Copérnico.
Considerando o modelo copernicano, suas realizações, contexto histórico, e as diferenças com o modelo ptolomaico-aristotélico, assinale a alternativa que apresenta a sequência correta de cima para baixo.
Assinale a alternativa que apresenta a expressão correta para o valor do campo gravitacional terrestre a uma altura igual a da ISS (g’) em relação ao valor da gravidade na superfície do planeta (g).
A imagem abaixo foi elaborada por Isaac Newton em sua obra Principia onde registra-se o movimento orbital ao redor de um planeta, costumeiramente ligada à representação pictórica da frase “um corpo em órbita é um corpo em queda permanente”.
Considere um ponto bem elevado do planeta como o Aconcágua, em Mendoza na Argentina, com aproximadamente 7 km de altitude, que será lançado em movimento orbital. Utilize, se necessário, os valores aproximados de 6,67 x 10-11 N.m2 /kg2 para a constante da gravitação universal, de 6.1024 kg para a massa da Terra, 6.400 km para o raio da Terra e √10 = 3,2.
Para fins de cálculo, considere a aproximação: 6,67 = 20/3.
No contexto dessa analogia, analise as afirmações desprezando-se todos os efeitos dissipativos possíveis:
I. Seria possível lançar um objeto horizontalmente de maneira a realizar uma volta completa ao redor de um planeta.
II. Um objeto de 1kg lançado do topo do Aconcágua com velocidade de aproximadamente 1 km/s não conseguiria realizar uma volta completa ao redor da Terra.
III. Considerando as órbitas mais elevadas (distantes da superfície). Nestas condições, a velocidade da órbita é dependente da massa do planeta, da massa do objeto e da distância entre seus centros de massa.
Estão corretas as afirmativas:
Júpiter e suas luas são observáveis com um telescópio amador. As quatro maiores luas de Júpiter foram descobertas por Galileu em 1610 e marcam o início da exploração do cosmos por meio de telescópios.
Sabendo-se que o período orbital da lua Europa
é aproximadamente o dobro do período orbital
da lua Io, e que o período orbital da lua
Ganímedes é aproximadamente o dobro do
período orbital da lua Europa, assinale a
alternativa que melhor representa uma possível
configuração visível em uma observação do céu
em que essas três luas e Júpiter estão alinhados
no plano perpendicular à direção de observação
(plano de observação). As linhas horizontais
estão equidistantes e considere 3√4 =1,6.
Para isto pesquisou na internet e obteve os valores da massa e do raio da Terra, da massa do Sputinik 1 e da altitude em que se encontrava e da constante de gravitação universal.
Ao fazer os cálculos verificou que era desnecessário saber o valor
O período do movimento é independente do comprimento do túnel e é dado por
A partícula oscila em torno do centro do túnel em MHS.
Fonte: UCLA Galactic Center Group - https://youtu.be/tMax0KgyZZU
Considere as afirmativas abaixo.
I. A partir do período orbital e dos raios médios identificados para as diferentes estrelas observadas é possível inferir a massa do buraco negro. II. Os dados todos são incompatíveis com as leis de Kepler já que buracos negros só podem ser descritos pela relatividade geral de Einstein. III. A proporção entre o quadrado do período das órbitas e o cubo de seus raios médios deve resultar um valor relativamente consistente para as órbitas fechadas que sejam identificadas pelos pesquisadores.
Estão corretas as afirmativas:
Com base nessas informações, é correto afirmar que a distância entre as estrelas é dada por
Texto 6A1-II
Considere os dados a seguir, a respeito do planeta Marte.
● aceleração da gravidade = 3,72 m/s2
● velocidade de escape = 5 km/s
Considere, ainda, 6,667 × 10-11 m3 .kg-1 .s -2
como o valor da
constante gravitacional de Newton.
Texto 6A1-II
Considere os dados a seguir, a respeito do planeta Marte.
● aceleração da gravidade = 3,72 m/s2
● velocidade de escape = 5 km/s
Considere, ainda, 6,667 × 10-11 m3 .kg-1 .s -2
como o valor da
constante gravitacional de Newton.
Uma partícula de massa m = 10 kg move-se em zig-zag a partir da superfície da Terra até uma altura de 6.000 km.
Considerando essa situação, julgue o item que se segue, assumindo o valor da constante universal gravitacional igual a a massa da Terra igual a 6,0×1024 kg e o raio da Terra igual a 6×106 m.
A força gravitacional é dada pelo gradiente do potencial
gravitacional.
Uma partícula de massa m = 10 kg move-se em zig-zag a partir da superfície da Terra até uma altura de 6.000 km.
Considerando essa situação, julgue o item que se segue, assumindo o valor da constante universal gravitacional igual a a massa da Terra igual a 6,0×1024 kg e o raio da Terra igual a 6×106 m.
O módulo da variação da energia potencial gravitacional é
igual a 6,6×108
J.