Questões de Concurso
Sobre magnetismo em física
Foram encontradas 483 questões
Um professor de Física leva para a sala de aula uma bússola, um pedaço de fio de cobre esmaltado, pilhas, porta-pilha, uma chave interruptora e um estilete.
Como ele está desenvolvendo o estudo de Eletromagnetismo pretende, com os instrumentos acima mencionados, mostrar o experimento de
Internet: <https://sobrefisica.wordpress.com> (com adaptações).
Tendo o texto acima como referência inicial, assinale a alternativa correta acerca dos fenômenos relacionados ao magnetismo.
Baseando-se nos estudos de Michael Faraday, Maxwell unificou, em 1864, os fenômenos elétricos e magnéticos observáveis, em um trabalho que estabeleceu conexões entre as várias teorias da época, derivando uma das mais elegantes teorias já formuladas. Maxwell demonstrou, com essa nova teoria, que vários fenômenos elétricos e magnéticos poderiam ser descritos em apenas quatro equações, na forma diferencial, conhecidas atualmente como Equações de Maxwell.
Internet: <http://mundoeducacao.bol.uol.com.br> (com adaptações).
(1) os campos magnéticos são rotacionais, isto é, não existem monopolos magnéticos; e
(2) correntes elétricas ou cargas em movimento geram campos magnéticos.
Tomando o texto acima como referência inicial, assinale a alternativa que apresenta, correta e respectivamente, as equações de Maxwell das quais essas afirmativas são consequências.
Um fio retilíneo longo está situado sobre o eixo Y conforme mostra a Figura abaixo. Esse fio conduz uma corrente I, no sentido negativo do eixo (– OY).
Além do campo magnético produzido pelo fio, existe um campo magnético uniforme no espaço dado por .
A expressão do campo magnético total no ponto a, situado
a uma distância L da origem é:
Uma partícula com carga q e com velocidade igual a entra em uma região com campos elétrico e magnético uniformes. O campo magnético é dado por .
Desprezando-se a massa da partícula, qual deve ser o campo elétrico na região para que a partícula se desloque em movimento retilíneo uniforme?
A figura precedente é constituída de um solenoide
considerado ideal, de indutância L e n espiras por unidade de
comprimento, conectado em série a um resistor R e a um capacitor
carregado, de capacitância C. A carga no capacitor é q = Cε,
em que ε é a voltagem máxima utilizada para carregar o circuito.
Em t = 0, a chave é ligada.
Com base nessas informações, julgue o item subsecutivo.
O campo no interior do solenoide, em função da corrente i,
é dado por B = μ0 n i, em que μ0 é a permeabilidade
magnética do meio.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
O campo magnético é igual a 3/2 T.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
O sentido em que a corrente percorre a espira é o horário.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
Caso o circuito seja percorrido por uma corrente de 1 A,
o número de elétrons que passam, em 1 segundo,
por determinada região da espira é menor que 1019.
A figura precedente ilustra um experimento que
permite medir a força magnética utilizando-se uma balança
conhecida como balança de Roberval. O circuito mostrado
nessa figura é constituído de uma fonte contínua de voltagem
ε = 10 V, um resistor de R = 10 Ω, ligados em série a uma
espira retangular com resistência nula. Na base da espira de
largura L = 5 cm, está delineada uma região na qual atua
um campo magnético de módulo B, com direção perpendicular
à folha do papel. Quando a chave é ligada, uma corrente percorre
a espira, e o efeito impulsiona a posição da massa localizada
no braço esquerdo da balança a se deslocar para cima, no sentido
vertical. Para retornar à situação original, é necessário adicionar
uma pequena massa de 1 mg na balança.
Com base nessas informações, julgue os itens seguintes, considerando o valor da gravidade igual a 10 m/s2 e a carga do elétron igual a 1,6 × 10-19 C.
A corrente que percorre o circuito é de 1,5 amperes.
Um material paramagnético com susceptibilidade magnética de χm = 0,48 é colocado em uma região do espaço contendo um campo magnético externo.
Qual é a permeabilidade magnética desse material?
Dado
μ0
= 1,26 x 10-6 N/A2
Uma espira circular de raio 1,00 cm é colocada no interior de um solenoide de raio 4,00 cm e 10,0 voltas por cm, de maneira que a normal do plano formado pela espira é paralela ao eixo principal do solenoide. O solenoide está ligado a um gerador e por ele passa uma corrente elétrica alternada dada por I(t) = I0 cos(ωt), onde I0 vale 3,00 mA e ω = 120π rad/s.
O módulo do valor máximo da força eletromotriz induzida na espira circular, em volts, é
Dado
π = 3,14
μ0 = 4π×10-7 N/A2
De acordo com as leis do eletromagnetismo, a força entre os condutores é
O transformador elétrico é um equipamento que viabiliza o transporte de energia a uma corrente mais baixa, reduzindo as perdas nas linhas de transmissão. Ele permite também a redução da tensão, de alta para baixa, viabilizando o uso da energia elétrica por consumidores domésticos.
Na Figura abaixo está esquematizado o transformador ideal, com a indicação das variáveis corrente e tensão para os circuitos primário e secundário.
Se a corrente i1
do circuito primário é de 5 A, e a corrente
i2
do circuito secundário é de 10 A, a tensão v2
no circuito
secundário correspondente a uma tensão de 220 V no circuito
primário, expressa em volts, será de
Em um experimento, um ímã percorre a trajetória reta AB, com velocidade constante, atravessando uma espira metálica conectada a um voltímetro, como mostra a Figura abaixo.
A voltagem indicada pelo voltímetro ao longo da trajetória do ímã é aproximadamente representada pelo seguinte gráfico:
Nas cidades as linhas de transmissão de energia passam próximas a áreas residenciais causando preocupação na comunidade local. Para evitar problemas, as empresas concessionárias tentam manter uma faixa na qual nenhuma construção pode ser realizada. Isso significa dizer que, para uma linha de transmissão de 525 A de corrente elétrica contínua, sendo de 10-5 T as recomendações internacionais sobre os limites de campos eletromagnéticos aceitáveis para exposição humana, a extensão dessa faixa, contando a partir do eixo do fio, é:
Adote μ = 4 π 10-7 T.m/A
Na figura abaixo, o diagrama caracteriza o fenômeno da histerese de um material ferromagnético. H é o valor do campo magnético aplicado, enquanto M é a magnetização do material.
O que representam b e c, respectivamente?