Questões de Física - Plano Inclinado e Atrito para Concurso
Foram encontradas 130 questões
Considere g = 10 m/s2
Na figura a seguir, pode-se ver várias esferas rolando nos diferentes níveis de uma rampa em degraus. Designando a energia potencial gravitacional de uma esfera por Ep, é correto então afirmar que:
No próximo desenho, o bloco de massa m, encontra-se em equilíbrio estático em um plano inclinado, ou seja, está na iminência de escorregar. Para um ângulo Φ= 45, o coeficiente de átrio estático (μE) nesse caso será então de:
Um veículo de 1.000 kg de massa, que se desloca sobre
uma pista plana, faz uma curva circular de 50 m de raio, com
velocidade de 54 km/h. O coeficiente de atrito estático entre os
pneus do veículo e a pista é igual a 0,60.
A partir dessa situação, julgue o item que se segue, considerando a aceleração da gravidade local igual a 9,8 m/s².
Considere que esse veículo colida com outro veículo, mas
o sistema permaneça isolado, ou seja, não haja troca de
matéria com o meio externo nem existam forças externas
agindo sobre ele. Nesse caso, segundo a lei de conservação
da quantidade de movimento, a soma das quantidades
de movimento dos dois veículos, antes e após a colisão,
permanece constante.
Um veículo de 1.000 kg de massa, que se desloca sobre
uma pista plana, faz uma curva circular de 50 m de raio, com
velocidade de 54 km/h. O coeficiente de atrito estático entre os
pneus do veículo e a pista é igual a 0,60.
A partir dessa situação, julgue o item que se segue, considerando a aceleração da gravidade local igual a 9,8 m/s².
O veículo está sujeito a uma aceleração centrípeta superior à
aceleração gravitacional.
Um disco sólido uniforme e um aro de mesmo raio R são colocados lado a lado no topo de um plano inclinado de altura H. São largados a partir do repouso e descem o plano girando sem deslizar. A razão entre as velocidades do disco sólido vd e a velocidade do aro va, quando estes chegam à base do plano inclinado, é dada por
(Dado: Momento de inércia do disco sólido com raio R: I = 1/2MR2 ; momento de inércia do aro com raio R: I = MR2 .)
Um bloco de massa 1 kg desliza em um trilho curvo com o formato de um arco de circunferência de raio 1 m, mostrado na figura a seguir. Considere que o bloco parte do repouso na posição A e que chega à posição B com velocidade de 2 m/s e a aceleração da gravidade é aproximadamente 10m/s2 . O trabalho realizado pela força de atrito sobre o bloco é, aproximadamente,
No ponto A, a velocidade do bloco é 1,0 m/s e no ponto B, distante 1 m de A, é 3,0 m/s. O coeficiente de atrito entre o bloco e o plano vale
Dados: g = 10 m/s2 sen 30° = 1/2 cos 30° = √3/2
Um adolescente de 70 kg está sentado em seu esqueite, de 2 kg, parado, no topo de uma rampa. Em seguida, guia o esqueite para baixo e atinge a base da rampa com uma velocidade de 5 m/s. O ângulo da rampa com sua horizontal é de 30°. A aceleração da gravidade é igual a 10 m/s2.
Com base nesse caso hipotético, assinale a alternativa que apresenta a distância, em metros, desprezando as forças de atrito existentes, em que o adolescente deslizou com seu esqueite.
Em um laboratório de Física, é feita, aos alunos de um grupo, a proposta de determinarem a intensidade da força de atrito entre a superfície horizontal de uma mesa e a base de um bloco de 5,0 kg de massa. Para tal finalidade, o bloco deve ser puxado, na direção do movimento, por um dinamômetro d, cuja mola tem uma constante de elasticidade de 100 N/m. Durante o movimento acelerado, de função horária S = 2,0.t2 (SI), a mola fica distendida de 28 cm.
A intensidade da força de atrito, em N, é de
Dado um corpo arbitrário com massa 3 kg concentrada em um ponto P ligado a outro de massa 2,5 kg concentrada em um ponto Q ligado por um fio ideal que atravessa uma polia ideal, como na figura abaixo.
O coeficiente de atrito (μ) para que esse sistema esteja em equilíbrio é
A figura precedente representa dois blocos A e B com
massas iguais a 6 kg e 4 kg, respectivamente, inicialmente em
repouso e ligados por um fio ideal (sobre uma roldana igualmente
ideal). O coeficiente de atrito entre A e o plano horizontal vale 0,4
e a aceleração da gravidade vale 10 m/s2
.
Com base nas informações apresentadas e assumindo que toda a energia dissipada pela força de atrito foi usada para aquecer o corpo A, julgue o item a seguir.
A presença do atrito entre o corpo A e o plano horizontal altera
o valor da força normal atuando sobre esse corpo.
A figura precedente representa dois blocos A e B com
massas iguais a 6 kg e 4 kg, respectivamente, inicialmente em
repouso e ligados por um fio ideal (sobre uma roldana igualmente
ideal). O coeficiente de atrito entre A e o plano horizontal vale 0,4
e a aceleração da gravidade vale 10 m/s2
.
Com base nas informações apresentadas e assumindo que toda a energia dissipada pela força de atrito foi usada para aquecer o corpo A, julgue o item a seguir.
A aceleração dos blocos será maior do que 1 m/s2
.
Uma cunha de massa M repousa sobre o topo horizontal de uma mesa sem atrito. Um bloco de massa m é colocado sobre a cunha, conforme ilustrado na figura a seguir.
Sendo µ o coeficiente de atrito estático entre a cunha e o bloco,
qual deve ser o módulo F da força mínima aplicada sobre a
cunha, para que o bloco permaneça em repouso em relação a
ela?
Considere as duas situações seguintes de um bloco apoiado sobre um plano e as forças, peso e normal, que atuam sobre cada um deles.
I – um bloco de massa m apoiado sobre uma superfície horizontal.
II – um bloco de massa m apoiado sobre um plano inclinado em um ângulo θ.
Considerando a terceira lei de Newton e as forças que atuam
sobre o bloco,
Uma esfera de massa 6 gramas, partindo do repouso, desliza sobre uma pequena rampa e rola sobre o solo, conforme mostrado na figura1. Considerando g=10m/s2 e o coeficiente de atrito cinético da esfera com o solo µc = 0,5, assinale a alternativa que corresponde à distância da base da rampa aonde a esfera irá parar. Desprezar o atrito entre a esfera e a rampa.
Alguns fenômenos do cotidiano necessitam da aplicação de uma força equilibrante para que as velocidades sejam mantidas. Situações como essas reforçam as concepções espontâneas que predominam na mente da maioria dos estudantes sugerindo que a descrição aristotélica dos fenômenos seja melhor que a da mecânica newtoniana.
Nesse sentido, para um veículo que sobe uma rampa em movimento uniformemente retardado, os vetores que descrevem a velocidade (V) e a força resultante (F) para o veículo, segundo a descrição newtoniana do movimento, estão representados na alternativa:
A figura acima representa dois blocos, 1 e 2, com
massas m e 2 m, respectivamente, que começaram a se movimentar,
de uma mesma altura h, a partir do repouso, em planos inclinados.
Os coeficientes de atrito dinâmico dos blocos 1 e 2, com relação às
superfícies dos planos inclinados, são, respectivamente, iguais a µ1
e µ2 .