Questões de Concurso
Foram encontradas 5.054 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
A figura abaixo representa a síntese da experiência de John Tyndall, primeiro relato de que se tem notícia da transmissão guiada de um feixe luminoso.
O que melhor representa o experimento?
Boa Vista, a capital do estado de Roraima, localiza-se a 212 km da fronteira do Brasil com a Venezuela, à margem do rio Branco e ocupa uma área de 5.711,9 km2 , com população de 154.166 habitantes e uma densidade demográfica de 27 habitantes por km2 (hab/km2 ). O estado de Roraima possui área de 225.116,1 km2 e população de 247.699 habitantes (1996).
Internet:<http://www.seplan.rr.gov.br>
Em relação ao texto acima e à geografia do estado de Roraima, julgue o item seguinte.
Viajando-se de avião a 500 km/h no sentido de Boa Vista para a
Venezuela, seria possível chegar à fronteira desse país em menos
de meia hora.
Acerca dos princípios de ótica geométrica, julgue o item seguinte.
Tanto as lentes dos óculos de correção visual quanto o cristalino do
olho funcionam devido à refração da luz.
O aparelho descrito na figura acima consiste em uma balança usada para medir a força elétrica entre as placas planas e paralelas de um capacitor. A placa superior do capacitor — indicada por a na figura —, com massa m1, e um contrapeso de massa m2 — indicado por b — encontram-se suspensos pelo braço de sustentação móvel da balança que está apoiado na quina da haste c. Esses elementos são feitos de metal de resistividade desprezível. A placa do capacitor e o contrapeso encontram-se a distâncias ℓ1 e ℓ2 do ponto de apoio, respectivamente. Duas bobinas idênticas, B1 e B2, estão sujeitas a um campo magnético de um ímã permanente que gira. Os vários componentes do aparelho encontram-se eletricamente conectados conforme mostra a figura. Em relação aos princípios físicos envolvidos nesse aparelho, julgue o item que se segue.
Na ausência da placa superior e com a chave S na posição fechada,
a tensão na placa inferior do capacitor em relação à tensão na haste
c é igual à fração da força eletromotriz do gerador.
O aparelho descrito na figura acima consiste em uma balança usada para medir a força elétrica entre as placas planas e paralelas de um capacitor. A placa superior do capacitor — indicada por a na figura —, com massa m1, e um contrapeso de massa m2 — indicado por b — encontram-se suspensos pelo braço de sustentação móvel da balança que está apoiado na quina da haste c. Esses elementos são feitos de metal de resistividade desprezível. A placa do capacitor e o contrapeso encontram-se a distâncias ℓ1 e ℓ2 do ponto de apoio, respectivamente. Duas bobinas idênticas, B1 e B2, estão sujeitas a um campo magnético de um ímã permanente que gira. Os vários componentes do aparelho encontram-se eletricamente conectados conforme mostra a figura. Em relação aos princípios físicos envolvidos nesse aparelho, julgue o item que se segue.
O campo elétrico entre as placas será tanto maior quanto maior for
o número de espiras nas bobinas, bem como mais intenso for o
campo magnético do ímã.
O aparelho descrito na figura acima consiste em uma balança usada para medir a força elétrica entre as placas planas e paralelas de um capacitor. A placa superior do capacitor — indicada por a na figura —, com massa m1, e um contrapeso de massa m2 — indicado por b — encontram-se suspensos pelo braço de sustentação móvel da balança que está apoiado na quina da haste c. Esses elementos são feitos de metal de resistividade desprezível. A placa do capacitor e o contrapeso encontram-se a distâncias ℓ1 e ℓ2 do ponto de apoio, respectivamente. Duas bobinas idênticas, B1 e B2, estão sujeitas a um campo magnético de um ímã permanente que gira. Os vários componentes do aparelho encontram-se eletricamente conectados conforme mostra a figura. Em relação aos princípios físicos envolvidos nesse aparelho, julgue o item que se segue.
Quando os potenciais elétricos nas placas do capacitor forem iguais e a balança estiver equilibrada, a relação m1/ℓ1 = m2/ℓ2 será válida.
O aparelho descrito na figura acima consiste em uma balança usada para medir a força elétrica entre as placas planas e paralelas de um capacitor. A placa superior do capacitor — indicada por a na figura —, com massa m1, e um contrapeso de massa m2 — indicado por b — encontram-se suspensos pelo braço de sustentação móvel da balança que está apoiado na quina da haste c. Esses elementos são feitos de metal de resistividade desprezível. A placa do capacitor e o contrapeso encontram-se a distâncias ℓ1 e ℓ2 do ponto de apoio, respectivamente. Duas bobinas idênticas, B1 e B2, estão sujeitas a um campo magnético de um ímã permanente que gira. Os vários componentes do aparelho encontram-se eletricamente conectados conforme mostra a figura. Em relação aos princípios físicos envolvidos nesse aparelho, julgue o item que se segue.
A força elétrica entre as placas do capacitor depende da distância
entre elas, mesmo se elas fossem infinitamente extensas.
O aparelho descrito na figura acima consiste em uma balança usada para medir a força elétrica entre as placas planas e paralelas de um capacitor. A placa superior do capacitor — indicada por a na figura —, com massa m1, e um contrapeso de massa m2 — indicado por b — encontram-se suspensos pelo braço de sustentação móvel da balança que está apoiado na quina da haste c. Esses elementos são feitos de metal de resistividade desprezível. A placa do capacitor e o contrapeso encontram-se a distâncias ℓ1 e ℓ2 do ponto de apoio, respectivamente. Duas bobinas idênticas, B1 e B2, estão sujeitas a um campo magnético de um ímã permanente que gira. Os vários componentes do aparelho encontram-se eletricamente conectados conforme mostra a figura. Em relação aos princípios físicos envolvidos nesse aparelho, julgue o item que se segue.
O módulo da força elétrica é máximo com a chave S na posição
aberta.
O aparelho descrito na figura acima consiste em uma balança usada para medir a força elétrica entre as placas planas e paralelas de um capacitor. A placa superior do capacitor — indicada por a na figura —, com massa m1, e um contrapeso de massa m2 — indicado por b — encontram-se suspensos pelo braço de sustentação móvel da balança que está apoiado na quina da haste c. Esses elementos são feitos de metal de resistividade desprezível. A placa do capacitor e o contrapeso encontram-se a distâncias ℓ1 e ℓ2 do ponto de apoio, respectivamente. Duas bobinas idênticas, B1 e B2, estão sujeitas a um campo magnético de um ímã permanente que gira. Os vários componentes do aparelho encontram-se eletricamente conectados conforme mostra a figura. Em relação aos princípios físicos envolvidos nesse aparelho, julgue o item que se segue.
As duas placas do capacitor estão sujeitas a forças elétricas atrativas
e repulsivas.
Um projétil de massa igual a 100 g penetra em um material e a sua posição, em função do tempo, dentro do material é descrita pelo vetor , em que
são vetores unitários que apontam nas direções positivas de x, y e z, respectivamente, e t é o tempo medido a partir do instante em que o projétil penetra no material, medido em milissegundos (ms). Considerando essas informações e que
seja medido em metros, julgue o item a seguir.
Com o passar do tempo, o projétil tende a se mover
exclusivamente ao longo da direção y.
Um projétil de massa igual a 100 g penetra em um material e a sua posição, em função do tempo, dentro do material é descrita pelo vetor , em que
são vetores unitários que apontam nas direções positivas de x, y e z, respectivamente, e t é o tempo medido a partir do instante em que o projétil penetra no material, medido em milissegundos (ms). Considerando essas informações e que
seja medido em metros, julgue o item a seguir.
A energia cinética do projétil no exato instante em que ele
penetra no material foi superior a 100 kJ.
Um projétil de massa igual a 100 g penetra em um material e a sua posição, em função do tempo, dentro do material é descrita pelo vetor , em que
são vetores unitários que apontam nas direções positivas de x, y e z, respectivamente, e t é o tempo medido a partir do instante em que o projétil penetra no material, medido em milissegundos (ms). Considerando essas informações e que
seja medido em metros, julgue o item a seguir.
O projétil penetra no material em um ponto determinado pelas
coordenadas x = 3, y = 0 e z = 0.
Um projétil de massa igual a 100 g penetra em um material e a sua posição, em função do tempo, dentro do material é descrita pelo vetor , em que
são vetores unitários que apontam nas direções positivas de x, y e z, respectivamente, e t é o tempo medido a partir do instante em que o projétil penetra no material, medido em milissegundos (ms). Considerando essas informações e que
seja medido em metros, julgue o item a seguir.
A componente do vetor velocidade ao longo da direção
x depende do tempo.
Um projétil de massa igual a 100 g penetra em um material e a sua
posição, em função do tempo, dentro do material é descrita pelo vetor , em que
são vetores unitários que
apontam nas direções positivas de x, y e z, respectivamente, e t é o
tempo medido a partir do instante em que o projétil penetra no
material, medido em milissegundos (ms). Considerando essas
informações e que
seja medido em metros, julgue o item a seguir.
Como a trajetória inicial do projétil sofre uma mudança de
direção, é correto concluir que ocorre uma variação no momento
linear e, por conseguinte, o projétil sofre a ação de uma força.
Uma testemunha afirmou ter visto uma pessoa equilibrando-se no parapeito da varanda de um apartamento no 8.° andar de um edifício e em seguida ter saltado para a frente, o que resultou em óbito, tendo o corpo permanecido no local onde caiu. Na perícia realizada, considerou-se a posição do corpo representada pelo seu centro de massa. Verificou-se ainda que a altura do solo até o parapeito do 8.° andar era igual a 30 m, que a massa da vítima era igual a 80 kg; e que o corpo tinha sido encontrado a 9 m de distância a partir da projeção vertical de onde a pessoa supostamente saltou. Para a elaboração do laudo, considerou-se a aceleração da gravidade igual a 10 m/s2 ; a resistência do ar desprezível; e ainda que um atleta padrão, parado e no solo, consegue saltar no máximo 1,80 m para a frente.
Com base nessa situação hipotética e nos dados apresentados acima e desprezando as alturas da vítima e de um atleta padrão, julgue o seguinte item.
O tempo de queda da vítima foi inferior a 2 s.
Uma testemunha afirmou ter visto uma pessoa equilibrando-se no parapeito da varanda de um apartamento no 8.° andar de um edifício e em seguida ter saltado para a frente, o que resultou em óbito, tendo o corpo permanecido no local onde caiu. Na perícia realizada, considerou-se a posição do corpo representada pelo seu centro de massa. Verificou-se ainda que a altura do solo até o parapeito do 8.° andar era igual a 30 m, que a massa da vítima era igual a 80 kg; e que o corpo tinha sido encontrado a 9 m de distância a partir da projeção vertical de onde a pessoa supostamente saltou. Para a elaboração do laudo, considerou-se a aceleração da gravidade igual a 10 m/s2 ; a resistência do ar desprezível; e ainda que um atleta padrão, parado e no solo, consegue saltar no máximo 1,80 m para a frente.
Com base nessa situação hipotética e nos dados apresentados acima e desprezando as alturas da vítima e de um atleta padrão, julgue o seguinte item.
Na queda, o trabalho executado pelo campo gravitacional sobre
a vítima foi superior a 20 kJ.
Uma testemunha afirmou ter visto uma pessoa equilibrando-se no parapeito da varanda de um apartamento no 8.° andar de um edifício e em seguida ter saltado para a frente, o que resultou em óbito, tendo o corpo permanecido no local onde caiu. Na perícia realizada, considerou-se a posição do corpo representada pelo seu centro de massa. Verificou-se ainda que a altura do solo até o parapeito do 8.° andar era igual a 30 m, que a massa da vítima era igual a 80 kg; e que o corpo tinha sido encontrado a 9 m de distância a partir da projeção vertical de onde a pessoa supostamente saltou. Para a elaboração do laudo, considerou-se a aceleração da gravidade igual a 10 m/s2 ; a resistência do ar desprezível; e ainda que um atleta padrão, parado e no solo, consegue saltar no máximo 1,80 m para a frente.
Com base nessa situação hipotética e nos dados apresentados acima e desprezando as alturas da vítima e de um atleta padrão, julgue o seguinte item.
Se um atleta padrão saltasse da posição de onde a vítima
supostamente saltou, de forma a atingir a máxima distância
possível, então a trajetória do seu centro de massa seria dada pela
equação y = 30 + x - 0,5x2
, em que y é a posição vertical medida
a partir do solo e x é a posição horizontal medida a partir da
projeção vertical do ponto inicial do salto.
Uma testemunha afirmou ter visto uma pessoa equilibrando-se no parapeito da varanda de um apartamento no 8.° andar de um edifício e em seguida ter saltado para a frente, o que resultou em óbito, tendo o corpo permanecido no local onde caiu. Na perícia realizada, considerou-se a posição do corpo representada pelo seu centro de massa. Verificou-se ainda que a altura do solo até o parapeito do 8.° andar era igual a 30 m, que a massa da vítima era igual a 80 kg; e que o corpo tinha sido encontrado a 9 m de distância a partir da projeção vertical de onde a pessoa supostamente saltou. Para a elaboração do laudo, considerou-se a aceleração da gravidade igual a 10 m/s2 ; a resistência do ar desprezível; e ainda que um atleta padrão, parado e no solo, consegue saltar no máximo 1,80 m para a frente.
Com base nessa situação hipotética e nos dados apresentados acima e desprezando as alturas da vítima e de um atleta padrão, julgue o seguinte item.
Os dados obtidos na perícia não são condinzentes com o relato da
testemunha, uma vez que nem um atleta padrão, após saltar do
referido apartamento, atingiria a posição onde o corpo foi
encontrado.
Uma testemunha afirmou ter visto uma pessoa equilibrando-se no parapeito da varanda de um apartamento no 8.° andar de um edifício e em seguida ter saltado para a frente, o que resultou em óbito, tendo o corpo permanecido no local onde caiu. Na perícia realizada, considerou-se a posição do corpo representada pelo seu centro de massa. Verificou-se ainda que a altura do solo até o parapeito do 8.° andar era igual a 30 m, que a massa da vítima era igual a 80 kg; e que o corpo tinha sido encontrado a 9 m de distância a partir da projeção vertical de onde a pessoa supostamente saltou. Para a elaboração do laudo, considerou-se a aceleração da gravidade igual a 10 m/s2 ; a resistência do ar desprezível; e ainda que um atleta padrão, parado e no solo, consegue saltar no máximo 1,80 m para a frente.
Com base nessa situação hipotética e nos dados apresentados acima e desprezando as alturas da vítima e de um atleta padrão, julgue o seguinte item.
Para que um atleta padrão atinja, partindo do solo, a distância de
1,80 m após o salto, é necessário que as componentes horizontal
e vertical do seu vetor velocidade sejam iguais.
Disponível em: <https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1032263/1/2015J.MauroSOBERProducao.p df> Acesso em: 13 nov. 2018.
Considerando que a lenha seca (12 % água) tem poder calorifico de 15000 kJ/kg, se a lenha fosse substituída por energia elétrica, qual seria o consumo anual de energia elétrica de um produtor que produz 4800 kg de tabaco ao ano para fazer a cura de toda a produção?