Questões de Concurso Comentadas para sedf

Foram encontradas 5.719 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q800408 Física

Ondas sonoras e eletromagnéticas são processos ondulatórios que têm características comuns entre si, embora representem fenômenos físicos completamente diferentes. Com relação a esses processos ondulatórios, julgue o item seguinte.

Tanto as ondas eletromagnéticas quanto as ondas sonoras são processos de oscilação de grandezas físicas escalares, que se propagam no espaço.

Alternativas
Q800407 Física

Ondas sonoras e eletromagnéticas são processos ondulatórios que têm características comuns entre si, embora representem fenômenos físicos completamente diferentes. Com relação a esses processos ondulatórios, julgue o item seguinte.

Como a velocidade da luz é independente do referencial inercial na qual é medida, a luz não sofre o efeito Doppler, como ocorre com a onda sonora.

Alternativas
Q800406 Física
Ondas sonoras e eletromagnéticas são processos ondulatórios que têm características comuns entre si, embora representem fenômenos físicos completamente diferentes. Com relação a esses processos ondulatórios, julgue o item seguinte. Tanto as ondas eletromagnéticas como as ondas sonoras podem apresentar o fenômeno de refração quando atravessam a fronteira entre dois meios diferentes.
Alternativas
Q800405 Física
        Imagem associada para resolução da questão

A figura precedente ilustra a situação em que um bloco, preso a uma mola, pode se deslocar sobre uma superfície horizontal lisa e sem atrito. O bloco tem massa m igual a 0,25 kg e, quando em movimento, a sua posição varia conforme a função x(t) a seguir.
 x(t) = (2,0 m) × cos[(4 rad/s) t + 2π/3 rad]

Tendo como referência essas informações e assumindo 3,14 como o valor de π, julgue o item subsecutivo.
O movimento do bloco é periódico e o seu período é superior a 1,50 s.
Alternativas
Q800404 Física
        Imagem associada para resolução da questão A figura precedente ilustra a situação em que um bloco, preso a uma mola, pode se deslocar sobre uma superfície horizontal lisa e sem atrito. O bloco tem massa m igual a 0,25 kg e, quando em movimento, a sua posição varia conforme a função x(t) a seguir.  x(t) = (2,0 m) × cos[(4 rad/s) t + 2π/3 rad] Tendo como referência essas informações e assumindo 3,14 como o valor de π, julgue o item subsecutivo. A força (F) que a mola exerce sobre o bloco obedece à lei de Hooke e é descrita matematicamente pela relação F(x) = -4xN.
Alternativas
Q800403 Física
       Imagem associada para resolução da questão  A figura precedente ilustra a situação em que um bloco, preso a uma mola, pode se deslocar sobre uma superfície horizontal lisa e sem atrito. O bloco tem massa m igual a 0,25 kg e, quando em movimento, a sua posição varia conforme a função x(t) a seguir.  x(t) = (2,0 m) × cos[(4 rad/s) t + 2π/3 rad] Tendo como referência essas informações e assumindo 3,14 como o valor de π, julgue o item subsecutivo. Quando a velocidade do bloco é 6 m/s, a energia potencial elástica da mola é a menor possível.
Alternativas
Q800402 Física
Imagem associada para resolução da questão
        As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. Se aumentar a distância entre essas bobinas, o campo magnético resultante também aumenta.
Alternativas
Q800401 Física
Imagem associada para resolução da questão
        As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. Se Km for a constante elástica da mola, então o valor medido da força magnética atuando na espira quadrada é Km'(l - l0).
Alternativas
Q800399 Física
Imagem associada para resolução da questão
        As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. Na figura II, o vetor indução magnética gerado pelas bobinas tem módulo diretamente proporcional à corrente IB e sua direção é perpendicular ao papel, sentido entrando na folha.
Alternativas
Q800398 Física
Imagem associada para resolução da questão
        As figuras I e II precedentes mostram um esquema experimental em que se utiliza a força elástica de uma mola para a determinação da força magnética gerada por uma corrente elétrica IB que circula em um par de bobinas. Uma espira quadrada, de aresta L, está posicionada no centro das bobinas. Na figura I, que mostra a visão lateral do esquema, d é o diâmetro de cada bobina, é a distância entre as bobinas, l0 é o comprimento da d 2 mola devido ao peso da espira no seu suporte e l, o comprimento da mola quando uma corrente i passa pela espira. Na figura II, que mostra uma visão frontal, z é o vão superior da espira quadrada. Considerando essas informações e as figuras apresentadas, julgue o próximo item. A figura a seguir mostra os sentidos corretos da corrente IB nas bobinas da figura I, para que o campo magnético resultante na região da espira quadrada seja a soma dos campos de cada bobina e maior que zero. Imagem associada para resolução da questão
Alternativas
Q800393 Física

Imagem associada para resolução da questão

O gráfico apresentado mostra a variação da pressão versus volume de um gás ideal que sofre um processo de expansão e contração isobárico e de aquecimento e resfriamento isocórico.

Com base nesse gráfico, julgue o item seguinte.

O trabalho realizado no ciclo é superior a 430 J.

Alternativas
Q800392 Física

Imagem associada para resolução da questão

O gráfico apresentado mostra a variação da pressão versus volume de um gás ideal que sofre um processo de expansão e contração isobárico e de aquecimento e resfriamento isocórico.

Com base nesse gráfico, julgue o item seguinte.

O calor recebido pelo gás é igual a 400 J.

Alternativas
Q800391 Física
Imagem associada para resolução da questão
A figura precedente mostra a situação em que dois fluidos (líquidos I e II), de densidades ρI e ρII, estão separados por uma placa rígida de altura H, apoiada sobre uma base sem atrito. Considerando essas informações, julgue o item que se segue. Para que haja equilíbrio de forças resultantes na placa rígida, a razão entre as densidades dos líquidos deve ser PI/PII .= 1/4.
Alternativas
Q800390 Física
Imagem associada para resolução da questão
A figura precedente mostra a situação em que dois fluidos (líquidos I e II), de densidades ρI e ρII, estão separados por uma placa rígida de altura H, apoiada sobre uma base sem atrito. Considerando essas informações, julgue o item que se segue. A força resultante, por unidade de comprimento, do líquido I na placa rígida é H2 /(2×ρI ×g), em que g é a aceleração da gravidade.
Alternativas
Q800388 Física

Imagem associada para resolução da questão

A empresa aeroespacial Lockheed Martin propôs recentemente que a NASA trabalhe com seus parceiros internacionais e a indústria privada para montar uma estação espacial na órbita de Marte até 2028. Conforme os desenvolvedores do projeto, os astronautas que iriam trabalhar e viver a bordo dessa base orbital coletariam informações que um futuro explorador do planeta vermelho precisaria saber.

Imagem associada para resolução da questão

        A figura apresentada ilustra a situação em que um satélite descreve uma órbita circular em torno de Marte, localizada no centro da órbita. O satélite se desloca com velocidade constante em módulo (MCU), a uma distância D da superfície de Marte, que tem a forma de uma esfera de raio R.

A partir dessas informações, julgue o seguinte item, considerando que a densidade de Marte é constante.

A velocidade escalar v do satélite em torno de Marte é Imagem associada para resolução da questão , em que G é a constante de gravitação universal e M, a massa de Marte.

Alternativas
Q800387 Física

Imagem associada para resolução da questão

A empresa aeroespacial Lockheed Martin propôs recentemente que a NASA trabalhe com seus parceiros internacionais e a indústria privada para montar uma estação espacial na órbita de Marte até 2028. Conforme os desenvolvedores do projeto, os astronautas que iriam trabalhar e viver a bordo dessa base orbital coletariam informações que um futuro explorador do planeta vermelho precisaria saber.

Imagem associada para resolução da questão

        A figura apresentada ilustra a situação em que um satélite descreve uma órbita circular em torno de Marte, localizada no centro da órbita. O satélite se desloca com velocidade constante em módulo (MCU), a uma distância D da superfície de Marte, que tem a forma de uma esfera de raio R.

A partir dessas informações, julgue o seguinte item, considerando que a densidade de Marte é constante.

A intensidade da atração gravitacional a que um corpo de massa m está sujeito ao aproximar-se do centro de Marte tenderá a um valor infinito.

Alternativas
Q800386 Física

Imagem associada para resolução da questão

A empresa aeroespacial Lockheed Martin propôs recentemente que a NASA trabalhe com seus parceiros internacionais e a indústria privada para montar uma estação espacial na órbita de Marte até 2028. Conforme os desenvolvedores do projeto, os astronautas que iriam trabalhar e viver a bordo dessa base orbital coletariam informações que um futuro explorador do planeta vermelho precisaria saber.

Imagem associada para resolução da questão

        A figura apresentada ilustra a situação em que um satélite descreve uma órbita circular em torno de Marte, localizada no centro da órbita. O satélite se desloca com velocidade constante em módulo (MCU), a uma distância D da superfície de Marte, que tem a forma de uma esfera de raio R.

A partir dessas informações, julgue o seguinte item, considerando que a densidade de Marte é constante.

A aceleração do satélite é zero, pois sua velocidade e seu período são constantes.

Alternativas
Q800385 Física
Imagem associada para resolução da questão
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. O momento linear total do sistema descrito é nulo no caso de o referencial estar localizado no centro de massa do sistema.
Alternativas
Q800384 Física
Imagem associada para resolução da questão
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. A energia cinética do sistema é conservada — ou seja, permanece constante — na direção do movimento mostrado nas figuras, devido à conservação do momento linear.
Alternativas
Q800383 Física
Imagem associada para resolução da questão
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. O acréscimo de velocidade adquirida pelo foguete devido à ejeção contínua de sua massa depende das massas final e inicial do foguete.
Alternativas
Respostas
3601: E
3602: E
3603: C
3604: C
3605: C
3606: E
3607: E
3608: C
3609: E
3610: E
3611: E
3612: C
3613: C
3614: E
3615: C
3616: E
3617: E
3618: C
3619: E
3620: C