Questões de Concurso
Foram encontradas 2.190 questões
Resolva questões gratuitamente!
Junte-se a mais de 4 milhões de concurseiros!
A figura precedente mostra a situação em que dois fluidos (líquidos I e II), de densidades ρI e ρII, estão separados por uma placa rígida de altura H, apoiada sobre uma base sem atrito. Considerando essas informações, julgue o item que se segue. A força resultante, por unidade de comprimento, do líquido I na placa rígida é H2 /(2×ρI ×g), em que g é a aceleração da gravidade.
A empresa aeroespacial Lockheed Martin propôs recentemente que a NASA trabalhe com seus parceiros internacionais e a indústria privada para montar uma estação espacial na órbita de Marte até 2028. Conforme os desenvolvedores do projeto, os astronautas que iriam trabalhar e viver a bordo dessa base orbital coletariam informações que um futuro explorador do planeta vermelho precisaria saber.
A figura apresentada ilustra a situação em que um satélite descreve uma órbita circular em torno de Marte, localizada no centro da órbita. O satélite se desloca com velocidade constante em módulo (MCU), a uma distância D da superfície de Marte, que tem a forma de uma esfera de raio R.
A partir dessas informações, julgue o seguinte item, considerando que a densidade de Marte é constante.
A velocidade escalar v do satélite em torno de Marte é , em que G é a constante de gravitação universal e M, a massa de Marte.
A empresa aeroespacial Lockheed Martin propôs recentemente que a NASA trabalhe com seus parceiros internacionais e a indústria privada para montar uma estação espacial na órbita de Marte até 2028. Conforme os desenvolvedores do projeto, os astronautas que iriam trabalhar e viver a bordo dessa base orbital coletariam informações que um futuro explorador do planeta vermelho precisaria saber.
A figura apresentada ilustra a situação em que um satélite descreve uma órbita circular em torno de Marte, localizada no centro da órbita. O satélite se desloca com velocidade constante em módulo (MCU), a uma distância D da superfície de Marte, que tem a forma de uma esfera de raio R.
A partir dessas informações, julgue o seguinte item, considerando que a densidade de Marte é constante.
A intensidade da atração gravitacional a que um corpo de
massa m está sujeito ao aproximar-se do centro de Marte
tenderá a um valor infinito.
A empresa aeroespacial Lockheed Martin propôs recentemente que a NASA trabalhe com seus parceiros internacionais e a indústria privada para montar uma estação espacial na órbita de Marte até 2028. Conforme os desenvolvedores do projeto, os astronautas que iriam trabalhar e viver a bordo dessa base orbital coletariam informações que um futuro explorador do planeta vermelho precisaria saber.
A figura apresentada ilustra a situação em que um satélite descreve uma órbita circular em torno de Marte, localizada no centro da órbita. O satélite se desloca com velocidade constante em módulo (MCU), a uma distância D da superfície de Marte, que tem a forma de uma esfera de raio R.
A partir dessas informações, julgue o seguinte item, considerando que a densidade de Marte é constante.
A aceleração do satélite é zero, pois sua velocidade e seu
período são constantes.
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. O momento linear total do sistema descrito é nulo no caso de o referencial estar localizado no centro de massa do sistema.
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. A energia cinética do sistema é conservada — ou seja, permanece constante — na direção do movimento mostrado nas figuras, devido à conservação do momento linear.
Quando um foguete se movimenta no espaço vazio, seu momento é modificado porque parte de sua massa é eliminada na forma de gases ejetados. Como esses gases adquirem algum momento, o foguete recebe um momento compensador no sentido oposto, sendo, portanto, acelerado como resultado da propulsão dos gases ejetados. As figuras apresentadas ilustram o sistema de propulsão idealizado pelo cientista russo Konstantin Tsiolkovsky: um foguete de massa inicial m + Δm, que se desloca com velocidade v, sofre, em certo instante, um acréscimo de velocidade Δv ao ejetar parte da sua massa (Δm) em alta velocidade (ve). A velocidade inicial do foguete é muito menor que a velocidade da massa ejetada (v < ve). Tendo como referência as informações precedentes, julgue os itens subsequentes, assumindo que o momento linear do sistema se conserva e que as massas m e Δm não estão sujeitas a forças externas ou de campo. O acréscimo de velocidade adquirida pelo foguete devido à ejeção contínua de sua massa depende das massas final e inicial do foguete.
Três homens tentam fazer girar, em torno do pino fixo O, uma placa retangular de largura a e comprimento 2a, que está inicialmente em repouso sobre um plano horizontal, de atrito desprezível, coincidente com o plano do papel. Eles aplicam as forças nos pontos A, B e C, como representadas na figura.
Designando, respectivamente, por MA, MB e MC as intensidades dos momentos dessas forças, em relação ao ponto O, é correto afirmar-se que
Um automóvel aproxima-se de um paredão, como ilustra a figura.
É incorreto afirmar-se que
Sobre esse tema, analise as afirmativas: I. Atualmente, com o avanço tecnológico, é possível desenvolver máquinas em que W = Q2. II. O trabalho da máquina térmica é representado pela equação W = Q2 – Q1. III. O esquema C representa um refrigerador possível e o trabalho absorvido por ele é W = Q2 + Q1. Das afirmações apresentadas estão corretas:
Um ponto material, em relação a um determinado referencial, tem velocidade, em função do tempo, indicada na tabela:
Assinale a alternativa, que apresenta, respectivamente,
a velocidade inicial do ponto material e a aceleração
média do ponto material, no intervalo de 1s a 2s.
A figura a seguir representa duas forças verticais que incidem sobre uma placa quadrada horizontal.
A força resultante e o momento em torno do eixo x e z são,
respectivamente:
A figura precedente, no sistema cartesiano de coordenadas ortogonais xOy, representa a trajetória de um móvel em movimento circular uniforme no sentido anti-horário, com velocidade angular constante ω, em radiano por segundo. A posição da projeção, em metros, de um ponto dessa trajetória no eixo x chama-se elongação e descreve um movimento harmônico simples. A máxima elongação (chamada de amplitude) equivale ao raio do círculo do movimento circular. A equação que associa a elongação em função do tempo é expressa por E(t) = Acosφ(t) = Acos(φ₀ + ωt), em que φ₀ e A são, respectivamente, a fase e a amplitude da elongação.
Tendo como referência essas informações e considerando um móvel cuja equação da elongação seja E(t) = 6 cos, julgue o item seguinte.
A taxa de variação da elongação é sempre constante ao longo
do movimento do móvel.
Na figura a seguir são apresentados cinco sinais.
O primeiro é de um sinal digital a ser transmitido.O segundo é uma onda portadora a ser modulada.
As ondas A, B e C são ondas portadoras moduladas, respectivamente, em