Questões de Vestibular
Sobre calorimetria em física
Foram encontradas 387 questões
A região situada no norte do Chile, onde se localiza o deserto do Atacama, é seca por natureza. Ela sofre a influência do Anticiclone Subtropical do Pacífico Sul (ASPS) e da cordilheira dos Andes. O ASPS, região de alta pressão na atmosfera, atua como uma “tampa”, que inibe os mecanismos de levantamento do ar necessários para a formação de nuvens e/ou chuva. Nessa área, há umidade perto da costa, mas não há mecanismo de levantamento. Por isso não chove. A falta de nuvens na região torna mais intensa a incidência de ondas eletromagnéticas vindas do Sol, aquecendo a superfície e elevando a temperatura máxima. De noite, a Terra perde calor mais rapidamente, devido à falta de nuvens e à pouca umidade da atmosfera, o que torna mais baixas as temperaturas mínimas. Essa grande amplitude térmica é uma característica dos desertos.
(Ciência Hoje, novembro de 2012. Adaptado.)
Baseando-se na leitura do texto e dos seus conhecimentos de processos de condução de calor, é correto afirmar que o ASPS __________________ e a escassez de nuvens na região do Atacama __________________ .
As lacunas são, correta e respectivamente, preenchidas por
1. Em um laboratório localizado ao nível do mar, na Antártida, a uma temperatura de 0 °C. 2. No mesmo laboratório, mas agora a uma temperatura de 250 K. 3. Em um laboratório no qual a temperatura é de 32 °F, em uma base lunar, cuja aceleração da gravidade é igual a um sexto daquela da Terra.
Indique a alternativa correta a respeito da comparação entre os períodos de oscilação ܲP1, ܲP2 e ܲP3 do pêndulo nas situações 1, 2 e 3, respectivamente.
Note e adote: Entalpia de vaporização da água a 100 °C = 40 kJ/mol; Massa molar da água = 18 g/mol; Densidade da água = 1 g/mL.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
A cada hora de funcionamento, a quantidade de calor
produzida por 600 milhões de lâmpadas incandescentes é
superior a seis vezes a quantidade de calor produzida pela
mesma quantidade de lâmpadas de LED.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
Uma lâmpada de potência igual a 60 W emite menos de
1018 fótons por segundo, se cada fóton tiver energia associada
de 6 × 10-19 J.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
A energia de um fóton ultravioleta com comprimento de onda
igual a 200 nm é inferior a 9 × 10-19 J.
A primeira lâmpada comercial, desenvolvida por Thomas Edison, consistia em uma haste de carbono, que era aquecida pela passagem de uma corrente elétrica a ponto de emitir luz visível. Era, portanto, uma lâmpada incandescente, que transforma energia elétrica em energia luminosa e energia térmica. Posteriormente, passou-se a utilizar, no lugar da haste, filamentos de tungstênio, cuja durabilidade é maior. Hoje, esse tipo de lâmpada tem sido substituído pelas lâmpadas fluorescentes e de LED.
As lâmpadas fluorescentes são construídas com tubos de vidro transparente revestidos internamente e contêm dois eletrodos (um em cada ponta) e uma mistura de gases em seu interior — vapor de mercúrio e argônio, por exemplo. Quando a lâmpada fluorescente é ligada, os eletrodos geram corrente elétrica, que, ao passar através da mistura gasosa, excita seus componentes, os quais, então, emitem radiação ultravioleta. O material que reveste o tubo tem a propriedade de converter a radiação ultravioleta em luz visível, que é emitida para o ambiente.
A lâmpada de LED é mais econômica que a incandescente, pois dissipa menos energia em forma de calor. Em geral, essas lâmpadas têm eficiência de 15 lumens por watt. Um lúmen (unidade padrão do Sistema Internacional) é o fluxo luminoso emitido por uma fonte puntiforme com intensidade uniforme de 1 candela e contido em um cone de ângulo sólido de um esferorradiano. A tabela a seguir apresenta características específicas das lâmpadas incandescentes, fluorescentes e de LED.
A partir do texto acima e considerando que 6,63 × 10-34 J-s seja o valor da constante de Planck, que 3 × 108 m/s seja a velocidade da luz e que a temperatura em graus Kelvin seja exatamente igual à temperatura em graus Celsius acrescida de 273, julgue o item.
As transições eletrônicas a que o texto se refere são
indicadores de que, na lâmpada fluorescente, a luz é emitida de
forma quantizada.
Em 2013, uma das descobertas de maior importância do
ponto de vista tecnológico foi a criação de unidades fotovoltaicas
à base de perovskita, termo que designa um tipo de óxido com
fórmula geral ABO3, em que A e B representam cátions metálicos.
Um exemplo típico é o CaTiO3. A unidade básica do cristal de uma
perovskita consiste na estrutura cúbica mostrada na figura acima,
em que cada um de oito cátions “A” ocupa um dos vértices do cubo;
seis íons oxigênio estão nos centros das faces do cubo, formando
um octaedro regular; e um cátion “B” está no centro do cubo.
Considerando essas informações e que o número de Avogadro seja igual a 6,0 × 1023, julgue o item que é do tipo B.
Considere as seguintes informações: para aquecer água, utiliza-se uma unidade fotovoltaica com placa coletora de área 10,0 m2 ; a intensidade da radiação solar que atinge a placa é constante e igual a 1.000 W/m²; a placa converte 15,0% dessa energia em calor efetivamente empregado para aquecer a água. Considere, ainda, que o calor específico e a densidade da água, com temperaturas entre 20,0 ºC e 40,0 ºC, sejam 4,20 J × g-1 × K-1 e 1,00 g/mL, respectivamente. Com base nessas informações, calcule o tempo, em segundos, necessário para que a unidade fotovoltaica forneça calor suficiente para aquecer 50,0 L de água de 20,0 ºC a 40,0 ºC. Depois de efetuar todos os cálculos solicitados, divida o valor encontrado por 10 e despreze, para marcação no Caderno de Respostas, a parte fracionária do resultado final obtido, caso exista.
280.
Para aquecer a quantidade de massa m de uma substância, foram consumidas 1450 calorias. A variação de seu calor específico c, em função da temperatura θ, está indicada no gráfico.
O valor de m, em gramas, equivale a:
O consumo calórico de um animal de sangue quente é proporcional à área superficial de seu corpo. Um animal com massa 3,5 kg consome 250 kcal diárias. O gráfico relaciona a área superficial desse animal com sua massa.
Considerando o gráfico, conclui‐se que,se a massa deste animal
dobrar, o seu novo consumo diário de energia, em kcal, será,
aproximadamente,
À medida que a parcela de ar se eleva na atmosfera, nos limites da troposfera, a temperatura do ar decai a uma razão de 1 °C a cada 100 metros (Razão Adiabática Seca ‐ RAS) ou 0,6 °C a cada 100 metros (Razão Adiabática Úmida ‐ RAU).
Considerando os conceitos e a ilustração, é correto afirmar que as temperaturas do ar, em graus Celsius, T1 e T2, são, respectivamente,
Note e adote:
Utilize RAS ou RAU de acordo com a presença ou não de ar saturado.
Tar: temperatura do ar.
(Fonte: Estação Meteorológica São Paulo (Mirante de Santana) – A701 – INMET, 2018.)
Considerando que houve redução de smog na cidade de São Paulo durante a greve dos caminhoneiros e levando em conta as condições climáticas descritas no gráfico, infere-se que ocorreu maior redução do
A velocidade máxima do vento no furacão Irma em setembro/2017 chegou a 346 km/h, o que o classifica como um furacão de categoria 5.
Segundo um modelo teórico desenvolvido no MIT (Massachuttes Institute of Thecnology), um furacão pode ser tratado como uma máquina de calor de Carnot. A tempestade extrai calor do oceano tropical quente (água como fonte de calor) e converte parte do calor em energia cinética (vento).
Nesse modelo, a velocidade máxima Vmáx pode ser obtida da equação
Nessa equação, Toce e Tatm são, respectivamente, a temperatura da superfície do oceano e a temperatura no nível do topo da nuvem a cerca de 12 a 18 km, ambas em K, e E corresponde à taxa de transferência de calor do oceano para a atmosfera.
Considere, no modelo, os seguintes processos.
I - Diminuição da temperatura na superfície do oceano.
II - Aumento na diferença de temperatura entre a superfície do oceano e o topo da nuvem na atmosfera.
III- Diminuição na taxa de transferência de calor.
Quais processos contribuem para o aumento
da velocidade máxima do vento em um
furacão?
Uma quantidade de calor Q = 56.100,0 J é fornecida a 100 g de gelo que se encontra inicialmente a -10 °C.
Sendo
o calor específico do gelo cg = 2,1 J/(g°C),
o calor específico da água ca = 4,2 J/(g°C) e
o calor latente de fusão CL = 330,0 J/g,
a temperatura final da água em °C é,
aproximadamente,
Considere as afirmações sobre a troca de calor e de matéria em sistemas termodinâmicos.
I. Sistemas abertos trocam calor e matéria com seu entorno.
II. Sistemas fechados só trocam calor com seu entorno.
III. Sistemas isolados não trocam calor e nem matéria com seu entorno.
IV. Em um processo adiabático, o sistema é considerado fechado.
V. Nem todo organismo vivo é um exemplo de sistema aberto.
Assinale a afirmativa correta.
Deseja-se construir uma chaleira elétrica de tal maneira que 1,0l de água, ao nível do mar, inicialmente a 20oC, entre em ebulição em 1,0 minuto.
Assinale a alternativa que corresponde à potência elétrica desta chaleira.