Questões de Vestibular
Sobre dinâmica em física
Foram encontradas 1.305 questões
Para ilustrar os princípios básicos de funcionamento de uma usina hidrelétrica e a relação das várias variáveis físicas envolvidas no processo, construiu-se o aparato ilustrado na figura precedente, no qual um tanque cilíndrico com diâmetro de seção transversal d0 está cheio de água até a uma altura h0 do fundo do tanque. Um tubo de captação da água, também cilíndrico e com secção transversal de diâmetro , é acoplado ao tanque no ponto 3, a uma altura h da base do tanque. A água então pode escoar, através de um tubo de escoamento, até um tubo de saída, com diâmetro d2 e no mesmo nível de altura do fundo do tanque. No ponto P2 do tubo de saída, a água é jorrada para fora em direção a uma roda dentada, fazendo-a girar (pela força exercida pelo jato de água). Uma torneira é instalada na parte superior do tanque para repor a água que é jorrada para fora e manter o nível da superfície livre, na parte superior do tanque, sempre constante. O aparato permite a variação tanto da altura h1 como do diâmetro d1 do tubo de captação. Na superfície livre, a velocidade de queda da água é v0, no ponto de entrada do tubo de captação em P1, a velocidade de escoamento da água é v1, e, no ponto de saída da água em 3, é 4. O diâmetro d0 é muito maior que o diâmetro d2 e d0 > d1 . A pressão atmosférica é indicada por p0, a densidade da água, por p, e a aceleração da gravidade, por g.
A potência máxima que pode ser transmitida pelo jato de água para a roda dentada é pA2 v32/2.
A velocidade angular da engrenagem de saída é 400 rpm.
A força FM exercida pelo bíceps braquial artificial é inferior a 150 N.
Na situação em questão, há conservação de momento angular.
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
Faça o que se pede no item 37, que é do tipo B.
Considerando que o trem sobe o trilho com velocidade constante, calcule, em kilo-newtons (kN), o valor da intensidade da tensão T5. Após realizar todos os cálculos solicitados, despreze, para a marcação no Caderno de Respostas, a parte fracionária do resultado final obtido, caso ela exista.
300
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
Quando o trem sobe certa altura, a variação de energia potencial gravitacional de cada vagão será a mesma, independentemente de o trem estar acelerado ou em velocidade constante.
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
Se o trem sobe com uma velocidade constante, a tensão de maior intensidade é a tensão T1, devido ao peso da caixa sobre o último vagão.
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
Se o trem subir com uma aceleração a > 6m ⁄ s2 , a caixa no teto do último vagão deslizará e cairá do vagão.
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
Considere que o trem suba a uma velocidade constante e que a caixa apoiada no teto do último vagão pese 5 toneladas. Nessa hipótese, a caixa deslizará.
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
As tensões Ti e Ti+1 de cabos sucessivos do trem formam pares de ação e reação, obedecendo à terceira lei de Newton.
Um trem é composto por uma máquina que puxa nove vagões sobre um trilho inclinado de um ângulo θ = 30 com relação à direção horizontal, conforme ilustra a figura precedente. Os vagões e a máquina, todos com a mesma massa M =10 toneladas, estão conectados por cabos submetidos a tensão de intensidade Ti (i = 1, ... 9). Uma caixa de massa m, também com 10 toneladas, apoia-se sobre o último vagão, estando presa apenas devido à força de atrito entre as superfícies de contato da caixa com o teto do vagão. A força de tração da máquina para puxar o trem é indicada por o coeficiente de atrito estático entre a caixa e o teto do vagão é µ = 1 e a aceleração da gravidade é g = 10 m s ⁄2 .
Com base nessas informações, julgue o item.
Para o trem subir a uma velocidade constante, a intensidade da força de tração da máquina deve ser = 5,05 x 105 N.
Use os valores aproximados: g = 10 m/s2 e π = 3.
Uma das etapas mais difíceis de um voo espacial tripulado é a
reentrada na atmosfera terrestre. Ao reencontrar as camadas
mais altas da atmosfera, a nave sofre forte desaceleração e sua
temperatura externa atinge milhares de graus Celsius. Caso a
reentrada não ocorra dentro das condições apropriadas, há risco de graves danos à nave, inclusive de explosão, e até mesmo
risco de ela ser lançada de volta ao espaço.
Adaptado de http://www1.fisica.org.br/fne/phocadownload/ Vol16-Num2/a05.pdf
Ao realizar uma determinada atividade utilizando apenas a mola amarela, duas alunas, Carolina e Fernanda, fizeram a seguinte solicitação para a instrutora:
Carolina: Está muito pesado! Por favor, diminua a carga. Fernanda: Está muito leve! Quero realizar o exercício com a maior carga possível.
Qual das ações propostas a seguir atende os objetivos das alunas?
https://earth.google.com/web/search(Adaptada)
Um carro com massa de 1600 kg que se deslocava de oeste para leste, com uma velocidade de módulo igual a 72 km/h, colidiu com uma caminhonete de massa igual a 2400 kg que se deslocava do sul para o norte, com uma velocidade em módulo de 36 km/h. Em virtude da colisão, os dois veículos seguiram engavetados como um único corpo, na direção nordeste.
https://imirante.com/oestadoma/noticias/2015/07/09/550-acidentes-de-transito-ocorrem-por-mes-em-avenidas-de-sao-luis/ (Adaptada)
Considerando a situação descrita acima e que, no momento da colisão, estava chovendo muito e, por isso, o atrito entre os veículos e a estrada pode ser desprezado, o módulo da velocidade, no momento em que os dois veículos movem-se juntos, na direção nordeste, em m/s, é igual a